
Adaptive MPI
Santos Dumont Supercomputing Summer School 2021

Esteban Meneses, PhD

Advanced Computing Laboratory
Costa Rica High Technology Center

School of Computing
Costa Rica Institute of Technology

emeneses@cenat.ac.cr

2021

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Outline

Presentation

Parallel Programming Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message Passing Interface
Introduction
Communication Optimizations
Migration

Global Variable Privatization

2

Where do I come from?
Central America

Costa Rica

is not Puerto Rico
has no standing army since 1949
hosts 6% of world’s biodiversity
produces 98% of its electricity from green sources

Costa Rica High Technology Center
CeNAT

Development through Knowledge

CeNAT-CONARE Campus, Pavas, San José

Collaborative Research Projects
Accelerating scientific discovery

Physics Seismology Biodiversity Bioinformatics

Mobility Epidemics HPC Image Analysis

Trainings and Seminars
Advanced Computing Laboratory

Costa Rica HPC School

Costa Rica Big Data School

Parallel Programming Model

Flame Simulation on IPLMCFD Application

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Parallel Programming Model
An abstract machine on which parallel programs will execute

Copernicus’s heliocentric model

I Components:
I Execution model: how

code gets executed
I Memory model: how

data moves between
memory hierarchy

I Most parallel systems
expose multiple parallel
programming models

10

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Desirable Features
The HPC Holy Grail

I Performant: extracts as much performance as possible
from the underlying hardware

I Productive: expresses abstract algorithms easily

I Portable: can be used on any computer

I Expressive: allows a broad range of algorithms

I Scalable: the general structure of the code persists as
more hardware is used

11

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Implementation
Alternatives for using the model

I Library:
I An API of function calls
I Library gets linked with the executable; multiple

languages

I Programming Language Extension:
I Additional constructs for parallelism
I Compiler support for translation

I New Programming Language:
I Design of new language grammar
I Flexibility to include features

There are only two kinds of languages:

the ones people complain about and the ones nobody uses

Bjarne Stroustrup

12

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Parallel Objects Model
Object-oriented parallel programming

I An application is
decomposed into wudus
(work and data units)

I Objects are reactive

entities: interface of
remote methods

I All message-passing
operations are
nonblocking:
asynchronous method

invocation

I A message-driven
execution similar to
Active Messages

I Objects know how to
serialize/deserialize, also called
the pack-unpack (PUP)
framework

I Goals:
I Latency hiding
I Load balancing
I Adaptivity

13

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Introspective Runtime System
Smart and automatic decision making

I A thin layer between the
application and the
machine

I Based on object-based
overdecomposition: many
more objects than
processing entities

I Components:
I Message scheduler
I Routing tables
I Load and

communication
monitoring

14

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Migration
Objects can be relocated

I The underlying system consists of a collection of
processing entities (cores, processors, or nodes)

I Objects are distributed among the processing entities

I That assignment may change dynamically if load
imbalance arises

I An introspective runtime system detects performance
bottlenecks and balances load by moving objects
around.

15

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Load Balance
A complex optimization problem

I NP-complete problem:
suboptimal, but fast
heuristic algorithms

I Goal: avoid overloaded
nodes

I Runtime collects load
and communication data

I Greedy strategies, graph
partitioning

I Runtime system shu✏es
objects around to avoid
overloading

I Dynamic load balance

I Principle of persistence

I Based on PUP framework 16

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Charm++
Actively developed since mid 90s

I Objects are called chares

I Chare arrays are the main object collection

I Chares export remote entry methods

17

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Global Object Space
Entry methods can be called from anywhere

18

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Global Object Space
Proxy chares channel remote method calls

19

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Charm++ Runtime System
Multiple layers with di↵erent abstraction

20

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Charm++ Applications
Span multiple scientific domains

21

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Exercise
Got Charm++?

I Started at the Parallel Programming Laboratory of the
University of Illinois at Urbana-Champaign in the mid
90’s by Prof. Laxmikant V. Kalé

I Maintained by Charmworks Inc

I Charm++ o�cial website: http://charmplusplus.org/

I Get latest release version
I Build Charm++ and AMPI on your computer

I Linux:
./build AMPI netlrts-linux-x86 64 --with-production

--enable-error-checking -j4 -k

I Mac:
./build AMPI netlrts-darwin-x86 64 --with-production

--enable-error-checking -j4 -k

22

http://charmplusplus.org

Adaptive Message Passing

Interface

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Adaptive Message Passing Interface
An MPI implementation on top of Charm++ runtime system

I Enables Charm++ dynamic features for pre-existing
MPI codes

I Each MPI rank is wrapped as a Charm++ chare

I The collection of MPI ranks becomes a chare array

I MPI codes run on Charm++ runtime system

24

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Process Virtualization
AMPI virtualizes MPI ranks

I MPI ranks are implementing as migratable user-level
threads rather than OS processes

I Virtualization ratio akin to object overdecomposition

I If one MPI rank is blocked on communication, the
scheduler picks other rank to run

25

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

AMPI Library
AMPI virtualizes MPI ranks

I Another MPI implementation, similar to MPICH,
OpenMPI, MVAPICH

I Currently compliant with MPI 2.2 standard
I Benefits:

I Communication/computation overlap
I Cache benefits to smaller working sets
I Dynamic load balancing
I Fault tolerance
I Lower latency messaging within a process
I Reuse existing MPI codes and developer skills, but scale

them further

I Disadvantages:
I Some code modifications are required, v.g.,

global/static variables shared must be privatized
I Latest MPI functions might not be supported by AMPI

26

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Communication Optimizations
Speeding up algorithms

I AMPI overlaps communication of one rank with
computation of others scheduled on the same core

I Even blocking calls are executed asynchronously

I Supports non-blocking collectives since before MPI-3.0

I AMPI optimizes for communication locality (i.e.
neighbor exchanges)

I Can even load balance based on the application
communication graph, to improve communication
locality dynamically

27

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Communication Optimizations
Internal communications

AMPI o↵ers lower latency and higher bandwidth than
process-based MPIs for messages within a core or node

I P1: two ranks on the same core

I P2: two ranks on di↵erent cores in the same process
28

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Communication Optimizations
Example, OSU MPI latency benchmark

Running on Quartz (Intel Xeon/Omni-Path cluster at LLNL)

I P1: two ranks on the same core

I P2: two ranks on di↵erent cores in the same process

29

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Communication Optimizations
Example, OSU MPI latency benchmark

30

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Communication Optimizations
Example, OSU MPI bi-directional bandwidth benchmark

31

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Dynamic Load Balancing
AMPI instructions

I AMPI ranks are migratable across address spaces at
runtime

I Add a call to AMPI Migrate(MPI Info)

I Where info is the following:
MPI Info set(info, ampi load balance sync)

32

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Dynamic Load Balancing
BRAMS weather simulation code

Rodrigues, Eduardo R. et al. Optimizing an MPI Weather Forecasting

Model via Processor Virtualization, HiPC 2010.

33

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Isomalloc
Memory allocator

I User-level thread
stack + heap

I Reserves globally
unique slices of
virtual memory on
each process for all
ranks

I No need for
Pack/UnPack
routines

I Works on all 64-bit
platforms except
BGQ and Windows

34

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Dynamic Load Balancing
Example, Harm3D application

I Existing MPI astrophysics code developed by Scott
Noble at Tulsa (in collaboration with NCSA)

I Imbalanced case: two black holes (zones) move through
the grid with 3x more computational work in bu↵er
zone than in near zone

35

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Dynamic Load Balancing
Example, Harm3D application

36

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Fault Tolerance
Checkpointing ranks

I AMPI ranks can be migrated to persistent storage or in
remote memories for fault tolerance

I Storage can be disk, SSD, NVRAM

I Online fault detection and recovery

I Just pass a di↵erent MPI Info to AMPI Migrate()

MPI Info set(info1, ampi checkpoint,

in memory)

MPI Info set(info2, ampi checkpoint,

to file=dir name)

37

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Fault Tolerance
Example

38

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Fault Tolerance
Example

39

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Fault Tolerance
Example

40

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Fault Tolerance
Example

41

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

No Virtualization
Example

Load imbalance appears during
point-to-point messaging and in
MPI Allreduce each timestep

42

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

No Virtualization
Example

Communication/computation cycles mean the network is
underutilized most of the time

43

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Virtualization 8x
Example

Most of the idle time due to point-to-point
messaging and MPI Allreduce is now
hidden by computation

44

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Virtualization and Load Balancing
Example

The communication of each virtual rank is
overlapped with the computation of others
scheduled on the same core

45

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Virtualization 8x
Example

I Communication is spread over the whole timestep

I Peak network bandwidth used is reduced by 3x

46

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

AMPI Code
Compiling and running

I To compile an AMPI program:
charm/bin/ampicc pgm pgm.o

I For migratability, link with: -memory isomalloc

I For LB strategies, link with: -module CommonLBs

I To run an AMPI job, specify the number of virtual
processes (+vp)
./charmrun +p 1024 ./pgm

./charmrun +p 1024 ./pgm +vp 16384

./charmrun +p 1024 ./pgm +vp 16384 +balancer

RefineLB

47

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Exercise
Compiling and running

Steps:

1. Build and run the LULESH mini-app on AMPI

2. Experiment with varying degrees of virtualization
(ranks/core)

3. Add calls to create MPI Info for LB and to
AMPI Migrate()

MPI Info create(&info);

MPI Info set(info, "ampi load balance",

"sync");

4. Experiment with dynamic load balancing (frequency,
strategy)

Get started:
AMPI is distributed with Charm++, and is already built in
the pre-installed directory

48

Global Variable Privatization

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Global Variable Privatization
AMPI virtualizes the ranks of MPI COMM WORLD

I Ranks are implemented as user-level threads rather than
OS processes

I Is this safe?

int rank , size;

int main (int argc , char *argv []){

MPI_Init (&argc , &argv);

MPI_Comm_rank(MPI_COMM_WORLD , &rank);

MPI_Comm_size(MPI_COMM_WORLD , &size);

MPI_Barrier(MPI_COMM_WORLD);

if(rank == 0) MPI_Send (..);

else if (rank == 1) MPI_Recv (...);

MPI_Finalize ();

}

50

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Global Variable Privatization
Unsafe code without modification

51

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Global Variable Privatization
Recap

I AMPI virtualizes the ranks of MPI COMM WORLD

I It is unsafe to use a mutable global state:
I Global state: global and static variables that can be

modified
I Mutable: written multiple times

I Rule:
If global/static variables are written-once (or
read-only) to same value across all ranks, they are
safe. Otherwise, they are unsafe.

52

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Global Variable Privatization
How to make an existing code safe for AMPI virtualization?

I For new codes, this is easy: avoid mutable global state
I For existing codes, how should we safely virtualize

them?
I Avoid using mutable global/static variables, or refactor

to avoid them
I Tag declarations of unsafe variable as thread local
I AMPI supports privatizing these to each rank at

runtime:
ampicc -tlsglobals

I Other approaches possible, but either less portable or
still under development

53

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Global Variable Privatization
Manual encapsulation

I Method of refactoring an application to not use
mutable global/static state

I One-time refactoring with minor but pervasive changes,
can be done by novice programmers

I Can keep non-mutable variables at global scope
I Results in a portable program that can be run with both

MPI and AMPI

I Kinds of unsafe global/static variables:
I C/C++: non-const globally scoped variables, static

variables
I Fortran: non-PARAMETER variables that are

COMMON, SAVE, or MODULE

54

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Global Variable Privatization
Example

int rank , size;

int main (int argc , char *argv []){

initMPI(argc , argv);

doWork ();

}

int initMPI(int argc , char *argv []){

MPI_Init (&argc , &argv);

MPI_Comm_rank(MPI_COMM_WORLD , &rank);

MPI_Comm_size(MPI_COMM_WORLD , &size);

}

55

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Global Variable Privatization
Solution

int size;

int main (int argc , char *argv []){

int rank;

initMPI(argc , argv , &rank);

doWork(rank);

}

int initMPI(int argc , char *argv[], int *rank){

MPI_Init (&argc , &argv);

MPI_Comm_rank(MPI_COMM_WORLD , rank);

MPI_Comm_size(MPI_COMM_WORLD , &size);

}

56

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

AMPI Privatization
Manual encapsulation

In applications with many global variables, it is often easier
to define a new structure or derived type that contains all
the mutable global variables

I Can do this hierarchically within each module first, then
define one top-level structure that contains a type for
each module

I Can safely ignore PARAMETERs or const global data

I Benefit: only pass one extra argument to each function
that uses one or many global variables

57

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

AMPI Privatization
TLS globals

I Thread-Local Storage (TLS) provides per-thread copies
of memory

I C/C++11 provide standard support for thread local

attribute
I Fortran has no standard support for TLS, though

OpenMP has threadprivate

I AMPI provides support for privatizing TLS variables to
its user-level threads

I Only change necessary is tagging global variable
declarations with TLS attribute

I Runtime overhead is switching the TLS pointer at each
ULT context switch

I Currently requires gcc/gfortran and Linux

58

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Other approaches for AMPI Privatization
Automatic ELF Global O↵set Table swapping

Benefits:

I Full automation, no developer e↵ort

I Already implemented in AMPI

Limitations:

I Requires ELF binary format

I Requires disabling linker optimizations in ld v2.23+

I It does not handle static variables

I Runtime overhead proportional to the number of global
variables

59

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Other approaches for AMPI Privatization
icc mpc-privatize

Benefits:

I Full automation, no developer e↵ort

Limitations:

I Requires icc, or patched version of gcc

I Not yet supported by AMPI

60

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Other approaches for AMPI Privatization
Process-in-Process library

Benefits:

I Full automation, no developer e↵ort, no compiler
support needed

Limitations:

I Requires patched version of glibc

I Requires dynamic linking of application and libraries
with globals

I Not yet implemented in AMPI

61

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

AMPI Privatization
Fortran support

Additional concerns for AMPI-izing Fortran codes:

I Fortran program main must be renamed subroutine

MPI Main

I Fortran command line argument parsing must be done
with AMPI extension routines similar to Fortran2003
standard routines

I Implicit SAVE variables are static and can be hard to
identify

I Use of AUTOMATIC arrays can bloat the ULT stack
size

I Must use OpenMP threadprivate attribute for TLS
declarations

62

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Exercise
Manual privatization with single data structure

int myrank;

double xyz [100];

void subA();

int main(int argc , char** argv){

int i;

MPI_Init (&argc , &argv);

MPI_Comm_rank(MPI_COMM_WORLD , &myrank);

for(i=0;i <100;i++)

xyz[i] = i + myrank;

subA();

MPI_Finalize ();

}

void subA(){

int i;

for(i=0;i <100;i++)

xyz[i] = xyz[i] + 1.0;

}

63

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Exercise
Solution

int main(int argc , char** argv){

int i,ierr;

struct shareddata *c;

MPI_Init (&argc , &argv);

c = (struct shareddata *) malloc(sizeof(struct

shareddata));

MPI_Comm_rank(MPI_COMM_WORLD , &(c->myrank));

for(i=0;i <100;i++)

c->xyz[i] = i + c->myrank;

subA(c);

MPI_Finalize ();

}

void subA(struct shareddata *c){

int i;

for(i=0;i <100;i++)

c->xyz[i] = c->xyz[i] + 1.0;

}

64

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Exercise
FORTRAN code

Goal: Learn how to privatize an existing (Fortran) MPI code
using two privatization techniques:

I Manual encapsulation

I TLS globals

MiniGhost: a mini-application from the Mantevo suite:

I Fortran90 MPI stencil code

I Contains multiple global and static variables, across
multiple modules

I Mix of read-only, and written-once, and mutable
variables

65

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Exercise
FORTRAN code

1. Identify the global variables in MiniGhost

2. Only declared in 2 files: MG CONSTANTS.F and
MG OPTIONS.F

3. Classify them as mutable, written-once, or read-only

4. Privatize mutable global variables using OpenMP
threadprivate:

5. Compile with ampif90 -tlsglobals option

6. Run with di↵erent degrees of virtualization

66

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

AMPI
More resources

1. AMPI Tutorial:
https://charm.readthedocs.io/en/latest/ampi/manual.html

2. AMPI Research Papers:
https://charm.cs.illinois.edu/papers

3. AMPI applications:
git clone https://charm.cs.illinois.edu/

gerrit/benchmarks/ampi-benchmarks

67

https://charm.readthedocs.io/en/latest/ampi/manual.html
https://charm.cs.illinois.edu/papers

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Acknowledgements

I Dr. Carla Ostho↵ for invitation

I Sam White at University of Illinois for helping with
AMPI material and questions

I AMPI Tutorial by Parallel Programming Lab of
University of Illinois at Urbana-Champaign

68

Adaptive MPI

Esteban Meneses,
PhD

Presentation

Parallel
Programming
Model
Ideal Features
Parallel Objects
Charm++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion

Concluding Remarks

AMPI provides the dynamic RTS support of Charm++ with
the familiar API of MPI

I Overdecomposition

I Communication optimizations

I Dynamic load balancing

I Automatic fault tolerance

I Checkpoint/restart

I OpenMP runtime integration

69

	Presentation
	Parallel Programming Model
	Ideal Features
	Parallel Objects
	Charm++

	Adaptive Message Passing Interface
	Introduction
	Communication Optimizations
	Migration

	Global Variable Privatization

	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PauseLeft:
	0.PlayLeft:
	0.PlayPauseLeft:
	0.PauseRight:
	0.PlayRight:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:

