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Where do | come from?

Central America

Costa Rica
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is not Puerto Rico

has no standing army since 1949

hosts 6% of world’s biodiversity

produces 98% of its electricity from green sources
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Adaptive MPI

Parallel Programming Model
Esteban Meneses,

An abstract machine on which parallel programs will execute PhD

Ideal Features

> Components Parallel Objects

Charm

» Execution model: how
code gets executed

» Memory model: how
data moves between
memory hierarchy

Introduction

» Most parallel systems
expose multiple parallel
programming models

Copernicus's heliocentric model
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Desirable Features
The HPC Holy Grail

» Performant: extracts as much performance as possible
from the underlying hardware

» Productive: expresses abstract algorithms easily
» Portable: can be used on any computer
» Expressive: allows a broad range of algorithms

» Scalable: the general structure of the code persists as

more hardware is used

11
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Implementation

Alternatives for using the model

» Library:
» An API of function calls
» Library gets linked with the executable; multiple
languages
» Programming Language Extension:
» Additional constructs for parallelism
» Compiler support for translation
» New Programming Language:

> Design of new language grammar
> Flexibility to include features

There are only two kinds of languages:
the ones people complain about and the ones nobody uses
Bjarne Stroustrup
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Parallel Objects Model

Object-oriented parallel programming

» An application is
decomposed into wudus
(work and data units)

» Objects are reactive
entities: interface of
remote methods

> All message-passing
operations are
nonblocking:
asynchronous method
invocation

> A message-driven
execution similar to
Active Messages

Adaptive MPI

Esteban Meneses,
PhD

» Objects know how to

serialize/deserialize, also called
the pack-unpack (PUP)
framework

Parallel Objects

Goals:
» Latency hiding
» Load balancing
> Adaptivity

G2
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Introspective Runtime System

Smart and automatic decision making

> A thin layer between the
application and the
machine

» Based on object-based
overdecomposition: many
more objects than
processing entities

» Components:

> Message scheduler
» Routing tables
» Load and

communication
monitoring

14
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Node C

Node D
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Migration

Objects can be relocated

» The underlying system consists of a collection of
processing entities (cores, processors, or nodes)

» Objects are distributed among the processing entities

» That assignment may change dynamically if load

imbalance arises

» An introspective runtime system detects performance
bottlenecks and balances load by moving objects

around.

0

5

Node A Node B Node C Node D
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Adaptive MPI

Load Balance
Esteban Meneses,

A complex optimization problem PhD

Prom ors 063
T ms)
: |||“|“““|”|‘||‘|““HI““‘“““l"““““‘“" =

> Greedy strategies, graph ey

SN 11
» Runtime system shuffles

» NP-complete problem:
suboptimal, but fast
heuristic algorithms

» Goal: avoid overloaded
nodes

» Runtime collects load
and communication data

objects around to avoid
overloading

» Dynamic load balance
» Principle of persistence
» Based on PUP framework 14 ::CeNAT



Charm++ Adaptive MPI

Esteban Meneses,

Actively developed since mid 90s PhD
C++ Charm++
.h | .cpp .h cpp i
header source header source interface
file file file file file
Class Files Chare Class Files
Charm++

dedh
"}‘?‘ f ginclude “xxx.decl.h” ' #include “ooch”
i =
ch Cor.cpp ' £
defh
‘r"":‘ | tinclude “xxx.defh”

» Objects are called chares
» Chare arrays are the main object collection

» Chares export remote entry methods

17 :: CeNAT



Global Object Space

Entry methods can be called from anywhere

Chare B

re C[0] void entryMethod_2(MyMessage *msg) (
delete msg;
float myFloat = 3.14f;
AentryMethod_3(mylnt, myFloat);

B.enuyMemod 2msg); // retums immediately

)
void entryMethod _3(int var1, float var2) { ...}
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Global Object Space Adaptive MPI

Esteban Meneses,

Proxy chares channel remote method calls D
G\Obal Obje(t Space Presentation

Parallel
Programming

Model

Ideal Features
Parallel Objects
Charm—++

Adaptive Message
Passing Interface
Introduction

Communication
Optimizations
Migration

Global Variable
Privatization

R -~ — “. —= Conclusion

TN (Proxyfor)  SiRAN) (P fory
Chare C E)

N - L

Ll L]

Code local to this processor Code locof to this processor

Anteracts with the praxy cbjects. imteracts with the pray cbjects.
Processor 0 Processor 1

Physical Hardware
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Adaptive MPI

Charm-++ Runtime System

Multiple layers with different abstraction

Esteban Meneses,

Presentation

Parallel
Programming
Model

Ideal Features
Parallel Objects

Processor 0 Processor 1 Processor N-1 et

Adaptive Message
Passing Interface

ferarecn]

Introduction

Communication
Optimizations

Charm++ RTS/Converse Charm++ RTS/Converse Charm++ RTS/Converse Migration
[scheduler] PepErSeS [scheduter] ME7%5°TS st Global Variable

Privatization

Machine Layer Machine Layer

Tnterconnect

Machine Layer

Conclusion
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Charm++ Applications

Span multiple scientific domains

=

Do
Contagion PSTIR Engineering
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Exercise

Got Charm++7?

» Started at the Parallel Programming Laboratory of the
University of lllinois at Urbana-Champaign in the mid

90's

by Prof. Laxmikant V. Kalé

» Maintained by Charmworks Inc

» Charm++ official website: http://charmplusplus.org/

> Get latest release version
» Build Charm++ and AMPI on your computer

>

Linux:

./build AMPI netlrts-linux-x86_64 --with-production
--enable-error-checking -j4 -k

Mac:

./build AMPI netlrts-darwin-x86_64 --with-production

--enable-error-checking -j4 -k

22
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Adaptive Message Passing Interface

An MPI implementation on top of Charm-++ runtime system

» Enables Charm++ dynamic features for pre-existing
MPI codes

» Each MPI rank is wrapped as a Charm++ chare

» The collection of MPI ranks becomes a chare array

» MPI codes run on Charm++ runtime system

MP1“Processes”

implesnented o
J wirtual “processes”
(Bghewesght
user-devel
B R = =
thready) .
Processor A Processor B

24
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Adaptive MPI

Process Virtualization
AMPI virtualizes MPI ranks S

» MPI ranks are implementing as migratable user-level
threads rather than OS processes

Ideal Features
Parallel Objects

» Virtualization ratio akin to object overdecomposition Charm-+
MPI: P=4 AMPI: P=4, VP=16

Introduction
Communication
Optimizations
Migration

8|9
12]13

» If one MPI rank is blocked on communication, the
scheduler picks other rank to run

25 :: CeNAT



AMPI Library

AMPI virtualizes MPI ranks

» Another MPI implementation, similar to MPICH,
OpenMPI, MVAPICH

» Currently compliant with MPI 2.2 standard
> Benefits:

>

vV vy vy VvVYy

Communication/computation overlap

Cache benefits to smaller working sets

Dynamic load balancing

Fault tolerance

Lower latency messaging within a process

Reuse existing MPI codes and developer skills, but scale
them further

» Disadvantages:

>

>

Some code modifications are required, v.g.,
global/static variables shared must be privatized
Latest MPI functions might not be supported by AMPI

26
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Communication Optimizations

Speeding up algorithms

» AMPI overlaps communication of one rank with
computation of others scheduled on the same core

» Even blocking calls are executed asynchronously
» Supports non-blocking collectives since before MPI-3.0

» AMPI optimizes for communication locality (i.e.

neighbor exchanges)

» Can even load balance based on the application
communication graph, to improve communication

locality dynamically

27
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Communication Optimizations
Internal communications

AMPI offers lower latency and higher bandwidth than
process-based MPIs for messages within a core or node

R EE
e
[I111m

(LITI0 (LI

Core 0 Core 14 Core 15
0S5 Process

» P1: two ranks on the same core

» P2: two ranks on different cores in the same process

28
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Adaptive MPI

Communication Optimizations
Esteban Meneses,
Example, OSU MPI latency benchmark PhD

Running on Quartz (Intel Xeon/Omni-Path cluster at LLNL)

» P1: two ranks on the same core

. . Ideal Features
> P2: two ranks on different cores in the same process Parallel Objects

Charm

Introduction

Communication
MVAMCH 12 =8 AMPE o 1) == Optimizations

wh IMPY P2 P AMPLoAn P) ==
Opantti 12 ==

Migration

foway Latercy ()

018 A A A A A A A A

| 4 L3 “ 14 1024 4o 16384 5336
Maeisage San (Byom)
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Adaptive MPI

Communication Optimizations
Example, OSU MPI latency benchmark ESteba;h'\geneses'

Ideal Features
Parallel Objects
Charm++

Latency (us)

Introduction

Communication
Optimizations

Message Size (XB) Migration
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Adaptive MPI

Communication Optimizations
.. . . Esteban Meneses,
Example, OSU MPI bi-directional bandwidth benchmark PhD

Ideal Features
Parallel Objects
Charm++
29000
STREAM copy

Introduction
Communication
Optimizations
Migration

4 e “ 154 1924 Q0% 16 65526
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Adaptive MPI

Dynamic Load Balancing
AMPI instructions ESteba;hl\El)eneses,

» AMPI ranks are migratable across address spaces at

runtime Ideal Features
Parallel Objects

Migration of VP 1 Charm-+

Introduction

Communication
Optimizations

Migration

8|9
12|13

9
1213

> Add a call to AMPI Migrate(MPI_Info)

» Where info is the following:
MPI_Info_set(info, ampi_load balance sync)

32 :: CeNAT



Adaptive MPI

Dynamic Load Balancing
) ) Esteban Meneses,
BRAMS weather simulation code PhD

Ideal Features
Parallel Objects
Charm++

Introduction

Communication
Optimizations

Migration

£

sesewes  mmeeme seseawss  moases

K<L [>[4] [+

Rodrigues, Eduardo R. et al. Optimizing an MPI Weather Forecasting
Model via Processor Virtualization, HiPC 2010.
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Adaptive MPI
Isomalloc
Esteban Meneses,
Memory allocator PhD
Presentation
Parallel
» User-level thread Programming
Model
stack 4+ heap ITTTIIYY A ARl [
Parallel Objects
» Reserves globally Svest ¢ was Sz
. . Foeed | mace ] Adaptive Message
Unlque S|IC€S Of Freet ] v - Passing Interface
virtual memory on e LA —rr— e
Optimizations
each process for all Wieiter
I’anks Global Variable
Privatization
> NO need for - S Conclusion
R —
Pack/UnPack e
H 3 - g ¢
routines e ead ) veag
. B s
» Works on all 64-bit oo P
platforms except - -
OOO000 2e 20000000

BGQ and Windows
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Dynamic Load Balancing
Example, Harm3D application

» Existing MPI astrophysics code developed by Scott
Noble at Tulsa (in collaboration with NCSA)

» Imbalanced case: two black holes (zones) move through
the grid with 3x more computational work in buffer
zone than in near zone

Buffer Zone (O,,)

Adaptive MPI

Esteban Meneses,

Presentation

Parallel
Programming
Model

Ideal Features
Parallel Objects
Charm-++

Adaptive Message
Passing Interface
Introduction
Communication
Optimizations
Migration

Global Variable
Privatization

Conclusion
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Dynamic Load Balancing
Example, Harm3D application

Single node runtime -- Strong Scaling

mpl
=10 LB
0.075 - GreecylB
== Refinel 8

0.06

# Steps / Sec
S
s &
& &

o
E

0.04
0.035

0.03 -
1 2 3 4 5 6 7

Virtualization Ratio
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Fault Tolerance
Checkpointing ranks

» AMPI ranks can be migrated to persistent storage or in
remote memories for fault tolerance

» Storage can be disk, SSD, NVRAM
» Online fault detection and recovery

> Just pass a different MPI_Info to AMPI _Migrate()
MPI Info_set(infol, ampi_checkpoint,

in_memory)

MPI Info_set(info2, ampi_checkpoint,

to_file=dir_name)

37
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Adaptive MPI

Fault Tolerance
Esteban Meneses,

Example PhD

PlasCon(M: iteration = 96, dt = 0.870094D-02, time = 0.8352900+00, 0.5000000+00, maxT = 0.298000D+03

PlasCon(M: iteration 97, dt = 0.870894D-02, time = 0.8439910+00, 0.5000000+00, maxT = ©.2980000403 .. Fontyres
PlasConCM: iteration 98, dt = 0.870094D-02, time = 0.8526920+00, 0.500000D+00, maxT = 0.298000D+03

PlasComCM: iteration 99, dt = 0.870094D-02, time = 0.8613930+00, 0.500000D+00, maxT = 0.20800@D+03 | 2rallel Objects
PlasConCM: iteration = 100, dt = 0.870094D-02, time = 0.870094D+00, cfl = 0.500000D+00, maxT = 0.298000D+403  Charm | |

[0] Checkpoint started .

{0] Checkpoint finished in 0.455819 seconds 1. Checkpoint

PlasConCM: iteration = 101, dt = 0.870094D-02, time = 0.8787950+00, cfl = 0.500000D+00, maxT = 0.298000D+03

Introduction

Communication
Optimizations

Migration
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Fault Tolerance

Example

PlasCom(M: iteration =
PlasCom(M: iteration
PlasCom(M: iteration
PlasCom(M: iteration
PlasCom(M: iteration =
[0] Checkpoint started

96, dt
97, dt
98, dt
99, dt
100, dt

[@] Checkpoint finished in ©.455819

PlasCom(M: iteration =
PlasComCM: iteration =
PlasCom(M: iteration =

Socket closed before recv.
Socket 4 failed

101, dt
102, dt
103, dt

0.870094D-02,
0.870094D-02,
0.870094D-02,
0.870094D-02,
0.870094D-02,

seconds

= 0.870094D-02,
= 0.870094D-02,
= 0.870094D-02,

time 0.8352900+00, cfl = 0.5000000+00, maxT
time 0.843991D+00, cfl 0.5000000+00, maxT
time 0.8526920+00, cfl ©.5000000+00, maxT
time 0.861393D+00, cfl ©.5000000+00, maxT
time = 0.870094D+00, cfl = ©.5000000+00, maxT

1. Checkpoint

time = 0.878795D+00, cfl = ©.5000000+00, maxT
time = 0.887496D+00, cfl = 0.500000D+00, maxT
time = 0.896197D+00, cfl = 0.500000D+00, maxT

2. Failure

39

0.2980000+03
0.2980000+03
0.298000D+03
0.298000D+03
0.2980000+03

0.2980000+03
0.298000D+03
©.2980000+03
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Adaptive MPI

Fault Tolerance

Esteban Meneses,

Example PhD
PlasCon(M: iteration = 96, dt = 0.870094D-02, time = 0.835290D+00, cfl = 0.5000000+00, maxT = 0.298000D+03
PlasCon(M: iteration 97, dt = 0.870094D-02, time = 0.8439910+00, Cfl = 0.5000000+00, maxT = 0.2980000+403 || Funtyree
PlasConCM: iteration 98, dt = 0.870094D-02, time = 0.852692D+00, cfl = 0.5000000+00, maxT = 0.298000D+03
PlasComCM: iteration 99, dt = 0.870894D-02, time = 0.861393D+0, cfl = 0.5000000+00, maxT = 0.298000D+83 | 2rallel Objects
PlasConCM: iteration = 100, dt = 0.870094D-02, time = 0.8 , cfl= 0.5000000+00, maxT = 0 +03 | Charm+t+

[0] Checkpoint started

[@] Checkpoint finished in ©.455819 seconds

PlasCom(M: iteration = 101, dt = 0.870094D-02, time
PlasComCM: iteration = 102, dt = 0.870094D-02, time
PlasComCM: iteration = 103, dt = 0.870094D-02, time

1. Checkpoint

0.878795D+00, cfl = ©.5000000+00, maxT = 0.298000D+03
0.887496D+00, cfl = 0.500000D+20, maxT 0.298000D+03 .
0.896197D+00, cfl = 0.500000D+00, maxT 0.298000D+03 Introduction

3 Communication
Socket closed before recv. 2. Failure Optimizations
Socket 4 failed

Migration
Charmrun finished launching new process in 1.153346 seconds 3. Recover
Charmrun says Processor 1 failed on Node 1
[1] Restarting after crash 4. Resume execution
[1] Restart finished in 0.458689 seconds at 0.463579.
PlasComCM: iteration = 101, dt = 0.870094D-02, time = 0.878795D+00, cfl = 0.5000000+00, maxT = ©.298000D+03

40 :: CeNAT



Fault Tolerance Adaptive MPI

Esteban Meneses,

Example PhD
PlasCon(M: iteration = 96, dt = 0.870094D-02, time = 0.835290D+00, cfl = 0.5000000+00, maxT = 0.298000D+03
PlasCon(M: iteration 97, dt = 0.870094D-02, time = 0.8439910+00, Cfl = 0.5000000+00, maxT = 0.2980000+403 || Funtyree
PlasConCM: iteration 98, dt = 0.870094D-02, time = 0.8526920+00, cfl = 0.5000000+00, maxT = 0.298000D+03 =
PlasComCM: iteration 99, dt = 0.870094D-02, time = 0.8613930+00, cfl = 0.500000D+00, maxT = 0.298000D+03 ' ~rallel Objects
PlasComCM: iteration = 100, dt = 0.870094D-02, time = 0.870094D+00, cfl = 0.5000000+00, maxT = 0.298000D+03  Charm |
[0] Checkpoint started .
{0] Checkpoint finished in 8.455819 seconds 1. Checkpoint
PlasConCM: iteration = 101, dt = 0.870094D-02, time = 0.8787950+00, cfl = 0.500000D+00, maxT = 0.298000D+03
PlasComCM: iteration = 102, dt = 0.870094D-02, time = 0.8874960+00, Cfl = 0.500000D+00, maxT = 0.298000D+03 _
PlasConCM: iteration = 103, dt = 0.870094D-02, time = 0.896197D+0@, cfl = 0.5000000+00, maxT = 0.298000D+03  Introduction

3 Communication
Socket closed before recv. 2. Failure Optimizations
Socket 4 failed

Migration
Charmrun finished launching new process in 1.153346 seconds 3. Recover
Charmrun says Processor 1 failed on Node 1
[1] Restarting after crash 4. Resume execution
[1] Restart finished in 0.458689 seconds at 0.463579.
PlasComCM: iteration = 101, dt = 0.870094D-02, time = 0.878795D+00, cfl = 0.5000000+00, maxT = ©.298000D+03

CharmLB> RefinelB: PE (@] starting at 69.353145
CharmLB> RefinelB: PE () #0bjects migrating: 7 5. Load balance
CharmLB> RefinelB: PE [@] finished at 69.355673 duration 0.002528 s

PlasCom(M: iteration = 102, dt = 0.870094D-02, time = ©.88 , cfl= @, , maxT = @ +93
PlasCom(M: iteration = 103, dt = 0.8700940-02, time = 0.896197D+00, cfl = 0.5000000+00, maxT = ©.2980000+083
PlasCom(M: iteration = 104, dt = 0.8709940-02, time = 0. , cfl = @. , maxT = 0. 493
PlasCom(M: iteration = 105, dt = 0.870094D-02, time = 0.91 , cfl = 0. , maxT = @ 483
PlasCom(M: iteration = 106, dt = 0©.8700940-02, time = ©.922 cfl = o. , maxT = 0, 493
PlasCom(M: iteration = 107, dt = ©.8700940-02, time = 0.9310010+00, cfl = 0.5000000+00, maxT = ©.2980000+083

1 :: CeNAT

N



. . . Adaptive MPI
No Virtualization >

Esteban Meneses,
Example PhD

Load imbalance appears during Computation
point-to-point messaging and in MP|_lsend
MPI_Allreduce each timestep MPI_Wait(all) [
MPI_Allreduce
Idle =

Migration

42 :: CeNAT



No Virtualization

Example

Communication/computation cycles mean the

underutilized most of the time

€
]
<
3
T
]
°
=
"
H]
&

Received External Bytes Over Time

Time (0.566ms resolution)

43
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. . . Adaptive MPI
Virtualization 8x "

Esteban Meneses,
Example PhD

Most of the idle time due to point-to-point (it
messaging and MPI_Allreduce is now MP)_lsend

hidden by computation MPI_Wait(all) [
MPI_Allreduce
Idle =

Migration

44 :: CeNAT



Virtualization and Load Balancing Adaptive MP!

Esteban Meneses,
Example

PhD
The communication of each virtual rank is [eulaneEtOW
overlapped with the computation of others LU=
scheduled on the same core MPI_Wait(all)
MPJ_Allreduce Optimi
igration

v 6
Wait (VP 45) " wn_wukvilm_w 1 (VP 45)
avn

nE

45 :: CeNAT



Virtualization 8x

Example

Externally

» Communication is spread over the whole timestep

> Peak network bandwidth used is reduced by 3x

Received External Bytes Over Time

|
A Dl

Time (0.353ms resolution)

46
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Migration
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AMPI Code

Compiling and running

» To compile an AMPI program:
charm/bin/ampicc pgm pgm.o

> For migratability, link with: -memory isomalloc

» For LB strategies, link with: -module CommonLBs

» To run an AMPI job, specify the number of virtual

processes (+vp)
./charmrun +p 1024
./charmrun +p 1024
./charmrun +p 1024
RefinelB

./pgm
./pgm +vp 16384
./pgn +vp 16384 +balancer

47

Adaptive MPI
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PhD

Migration
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Exercise

Compiling and running

Steps:

1. Build and run the LULESH mini-app on AMPI

2. Experiment with varying degrees of virtualization

(ranks/core)

3. Add calls to create MPI_Info for LB and to

AMPI Migrate ()

MPI_Info_create(&info);
MPI Info_set(info, "ampi load balance",

"sync“);

4. Experiment with dynamic load balancing (frequency,

strategy)
Get started:

AMPI is distributed with Charm++, and is already built in

the pre-installed directory

48
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Migration
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Global Variable Privatization



Global Variable Privatization
AMPI virtualizes the ranks of MPI_COMM_WORLD

» Ranks are implemented as user-level threads rather than

OS processes

» |Is this safe?

int rank, size;
int main (int argc, char *argv[]){

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);

MPI_Barrier (MPI_COMM_WORLD) ;

if (rank == 0) MPI_Send(..);

else if (rank == 1) MPI_Recv(...);

MPI_Finalize ();

50
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Global Variable
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Global Variable Privatization

Unsafe code without modification

o
()}

“

Erocess

Bark 0 Back 1 Crtan

MP_Comm_rank{comm, Scank) ok =0

NP1 Comm_rankjcomen, Srank) ook = 1

W frank == 0} rank = 1
NP Send(. )
MP!_Recvl. )

¥ {rank == 0) ook » 1

s Al
MPY_Reov( )
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Global Variable Privatization
Recap

» AMPI virtualizes the ranks of MPI_COMM_WORLD
> It is unsafe to use a mutable global state:

» Global state: global and static variables that can be
modified

» Mutable: written multiple times
> Rule:
If global/static variables are written-once (or
read-only) to same value across all ranks, they are
safe. Otherwise, they are unsafe.
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Global Variable Privatization

How to make an existing code safe for AMPI virtualization?

» For new codes, this is easy: avoid mutable global state

» For existing codes, how should we safely virtualize
them?

» Avoid using mutable global/static variables, or refactor
to avoid them

» Tag declarations of unsafe variable as thread_local

» AMPI supports privatizing these to each rank at
runtime:
ampicc -tlsglobals

» Other approaches possible, but either less portable or
still under development
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Global Variable Privatization

Manual encapsulation

» Method of refactoring an application to not use
mutable global/static state

» One-time refactoring with minor but pervasive changes,
can be done by novice programmers

» Can keep non-mutable variables at global scope

» Results in a portable program that can be run with both
MPI and AMPI

» Kinds of unsafe global/static variables:

» C/C++: non-const globally scoped variables, static
variables

» Fortran: non-PARAMETER variables that are
COMMON, SAVE, or MODULE
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Global Variable Privatization

Example

int

int

int

rank, size;

main (int argc, char *argv[]){
initMPI (argc, argv);
doWork () ;

initMPI(int argc, char *argv[]){
MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
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Global Variable Privatization

Solution

int

int

int

size;

main (int argc, char *argv[]){
int rank;

initMPI (argc, argv, &rank);
doWork (rank) ;

initMPI(int argc, char *argv[], int *rank){
MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
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AMPI Privatization

Manual encapsulation

In applications with many global variables, it is often easier
to define a new structure or derived type that contains all
the mutable global variables
» Can do this hierarchically within each module first, then
define one top-level structure that contains a type for
each module
» Can safely ignore PARAMETERSs or const global data

> Benefit: only pass one extra argument to each function
that uses one or many global variables
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AMPI Privatization
TLS globals

» Thread-Local Storage (TLS) provides per-thread copies
of memory

» C/C++11 provide standard support for thread_local
attribute

» Fortran has no standard support for TLS, though
OpenMP has threadprivate

» AMPI provides support for privatizing TLS variables to
its user-level threads

» Only change necessary is tagging global variable
declarations with TLS attribute

» Runtime overhead is switching the TLS pointer at each
ULT context switch

» Currently requires gcc/gfortran and Linux
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Adaptive MPI

Other approaches for AMPI Privatization
Automatic ELF Global Offset Table swapping ESteba;h'\geneses'

Benefits:
» Full automation, no developer effort
» Already implemented in AMPI

Limitations:
» Requires ELF binary format
Global Variable
» Requires disabling linker optimizations in Id v2.23+ Rrivatization

» |t does not handle static variables

» Runtime overhead proportional to the number of global
variables
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Other approaches for AMPI Privatization

icc mpc-privatize

Benefits:
» Full automation, no developer effort
Limitations:
» Requires icc, or patched version of gcc
> Not yet supported by AMPI
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Other approaches for AMPI Privatization

Process-in-Process library

Benefits:

» Full automation, no developer effort, no compiler
support needed

Limitations:
» Requires patched version of glibc

» Requires dynamic linking of application and libraries
with globals

» Not yet implemented in AMPI
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AMPI Privatization

Fortran support

Additional concerns for AMPI-izing Fortran codes:

>

Fortran program main must be renamed subroutine

MPI_Main

Fortran command line argument parsing must be done
with AMPI extension routines similar to Fortran2003

standard routines

Implicit SAVE variables are static and can be hard to

identify

Use of AUTOMATIC arrays can bloat the ULT stack

size

Must use OpenMP threadprivate attribute for TLS

declarations
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Exercise

Manual privatization with single data structure

int myrank;
double xyz[100];

void subA();
int main(int argc, char*x argv){
int i;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &myrank) ;
for(i=0;i<100;i++)

xyz[i] = i + myrank;
subA () ;
MPI_Finalize () ;

}

void subA () {
int 1i;
for(i=0;i<100;i++)
xyz[i] = xyz[i]l + 1.0;
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Exercise

Solution

int main(int argc, charx* argv){
int i,ierr;
struct shareddata *c;
MPI_Init (&argc, &argv);
¢ = (struct shareddata*)malloc(sizeof (struct
shareddata)) ;
MPI_Comm_rank (MPI_COMM_WORLD, &(c->myrank));
for(i=0;i<100;i++)

c->xyz[i] = i + c->myrank;
subA (c) ;
MPI_Finalize () ;
}
void subA(struct shareddata *c){
int i;
for(i=0;i<100;i++)
c->xyz[i] = c->xyz[i] + 1.0;
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Exercise
FORTRAN code

Goal: Learn how to privatize an existing (Fortran) MPI code
using two privatization techniques:

» Manual encapsulation
» TLS globals

MiniGhost: a mini-application from the Mantevo suite:

» Fortran90 MPI stencil code

» Contains multiple global and static variables, across

multiple modules

» Mix of read-only, and written-once, and mutable

variables
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Exercise
FORTRAN code

1. Identify the global variables in MiniGhost

2. Only declared in 2 files: MG_CONSTANTS.F and
MG_OPTIONS.F

3. Classify them as mutable, written-once, or read-only

4. Privatize mutable global variables using OpenMP
threadprivate:

5. Compile with ampif90 -tlsglobals option

6. Run with different degrees of virtualization

INTEGER :: VARIABLE
1Somp threadprivate(VARIABLE)
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A M P I Adaptive MPI

Esteban Meneses,
More resources PhD

1. AMPI Tutorial:
https://charm.readthedocs.io/en/latest/ampi/manual.html

2. AMPI Research Papers:
https://charm.cs.illinois.edu/papers

Global Variable

3. AMPI applications: e e
git clone https://charm.cs.illinois.edu/
gerrit/benchmarks/ampi-benchmarks
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Concluding Remarks

AMPI provides the dynamic RTS support of Charm++ with

the familiar API of MPI

>

>

>

v

v

v

Overdecomposition
Communication optimizations
Dynamic load balancing
Automatic fault tolerance
Checkpoint/restart

OpenMP runtime integration

& CeNAT
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