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Agenda

- Intro
- Containers Overview
- Managing Images, Containers and Running Containers
- Installing Docker and NVIDIA Docker



Introduction



DIFFERENT ROLES. SAME GOALS.
Driving Productivity and Faster Time-to-Solutions

Developers

Speed up development with 
existing building blocks

Data Scientists and 
Researchers

Eliminate mundane tasks, focus on 
science and research

Sysadmins

Deploy to production immediately
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OPTIMIZATIONINSTALLATION

Complex, time 
consuming, and 

error-prone

Requires expertise to 
optimize framework 

performance

IT can’t keep up with 
frequent software 

upgrades 

Users limited to older 
features and lower 

performance

CHALLENGES UTILIZING AI & HPC SOFTWARE

MAINTAINENCEPRODUCTIVITYEXPERTISE

Building AI-centric 
solutions requires 

expertise
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OPTIMIZED 
SOFTWARE

FASTER 
DEPLOYMENTS

Eliminates installations. 
Simply Pull & Run the 

app 

Key DL frameworks 
updated monthly for perf 

optimization

Empowers users to 
deploy the latest versions 

with IT support

Better Insights and faster 
time-to-solution

CONTAINERS – SIMPLIFYING AI & HPC WORKFLOWS

ZERO 
MAINTENANCE

HIGHER 
PRODUCTIVITY

EMBEDDING 
EXPERTISE

Deliver greater value, 
faster



GPU-OPTIMIZED SOFTWARE CONTAINERS
Over 50 Containers on NGC – ngc.nvidia.com

DEEP LEARNING MACHINE LEARNING

HPC VISUALIZATION

INFERENCE

GENOMICS

NAMD | GROMACS | 
more

RAPIDS | H2O | more TensorRT | DeepStream | more

Parabrick
s ParaView | IndeX | more

TensorFlow | PyTorch | more



NGC CONTAINERS: ACCELERATING WORKFLOWS

Simplifies Deployments

- Eliminates complex, time-consuming builds and 
installs

Get started in minutes

- Simply Pull & Run the app

Portable

- Deploy across various environments, from test to 
production with minimal changes

WHY CONTAINERS
Optimized for Performance
- Monthly DL container releases offer latest features and 

superior performance on NVIDIA GPUs

Scalable Performance

- Supports multi-GPU & multi-node systems for scale-up & 
scale-out environments

Designed for Enterprise & HPC environments

- Supports Docker & Singularity runtimes

Run Anywhere

- Pascal/Volta/Turing-powered NVIDIA DGX, PCs, 
workstations, and servers 

- From Core to the Edge 

- On-Prem to Hybrid to Cloud

WHY NGC CONTAINERS



Container Overview
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Containers

• Portable and reproducible builds
• Ease of deployment
• Run across heterogeneous CUDA toolkit environments (sharing the 

host driver)
• Bare Metal Performance 
• Facilitate collaboration



Virtual Machine vs. Container

Not so similar
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Not so similar

App 1 App 1 App 2

Bins / Libs Bins / Libs Bins / Libs

Guest OS Guest OS Guest OS

Hypervisor

Host Operating System

Server Infrastructure Server Infrastructure

Host Operating System

App 1 App 1 App 2

Bins / Libs Bins / Libs Bins / Libs

Docker Engine

Virtual Machines Containers
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NVIDIA Container Runtime
➔ Colloquially called “nvidia-docker”
➔ Docker containers are hardware-agnostic and 

platform-agnostic
➔ NVIDIA GPUs are specialized hardware that require the NVIDIA 

driver
➔ Docker does not natively support NVIDIA GPUs with containers
➔ NVIDIA Container Runtime makes the images agnostic of the 

NVIDIA driver 
◆ Required character devices and driver files are mounted 

when starting the container on the target machine
◆ This makes Docker images portable while still leveraging 

NVIDIA GPUshttps://github.com/NVIDIA/nvidia-docker

https://github.com/NVIDIA/nvidia-docker
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Docker

Image
Docker images are the basis of containers. An Image is an ordered collection of root filesystem 
changes and the corresponding execution parameters for use within a container runtime. An 
image typically contains a union of layered filesystems stacked on top of each other. An image 
does not have state and it never changes.

Container
A container is a runtime instance of a docker image.
A Docker container consists of
● A Docker image
● Execution environment
● A standard set of instructions

https://docs.docker.com/engine/reference/glossary/

Definitions

https://docs.docker.com/engine/reference/glossary/#container
https://docs.docker.com/engine/reference/glossary/#image


Managing Images, Containers and 
Running Containers



Managing Images and Containers

List Images:

Remove an Image:

Remove all of your images:
The  flag means "all" and the  flag 
makes the output a list of imageID's.

Common Commands
List Containers:

Stop a running Container:

Remove a Container:

Remove all containers:
Remove all running containers (  will try to force a 
shutdown of the container if it is running. )

● Refer to images and containers by their ID hash

● The first few characters of the image/container hash will do



Docker images detail
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Image Name = Repository:Tag ImageID = Unique Hash



17

Running Containers

Starts Tensorflow with ports, volumes, and 
console (All 1 line):

docker run and option

docker run Options

➔  enable GPU 
capabilities

➔  remove the container after it exits
➔ or  interactive, and connect a 

"tty" 
➔   run in the background
➔  give the container a name 
➔  port map from host to 

container
➔  map storage volume 

from host to container (bind mount) i.e. 
bind the  directory in your home 
directory to  in the container
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Navigating the NGC WebUI 
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NVIDIA GPU Cloud

Our challenge:

● Sign up for a free NGC account at www.nvidia.com/ngcsignup

● Login to the WebUI

● Generate an API key for Docker to use

How do we actually use it?

http://www.nvidia.com/ngcsignup
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What is an API Key?

Your API key represents your credentials

● Used for programmatic interaction (e.g., docker, REST API, etc.)
● Uniquely identifies you (think “Username & Password”)
● There can be only one (regenerating your API key invalidates the old one)

WebUI at ngc.nvidia.com: Use Username & Password

Programmatic interface at nvcr.io: Use API Key

(And why do you need one?)
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NGC Sign-up
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NGC Access
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NGC WebUI

When you login…
• Collections

• Containers List

• Instructions and Info

• Image specifics

• Docker pull shortcut

Where it all begins
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NGC WebUI

When you select a container
• Description on what the image 

contains

• Usually examples on running it

• Often has links for more 
information and tutorials

Instructions and Information
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NGC WebUI

List of images for that container
• Tag (nvidia/caffe:18.01)

• Follows YY.MM format

• Creation date
• Updated monthly

• Shortcut to copy docker 
pull command to clipboard

Image Specifics
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NGC WebUI

Shortcut to the latest at the top
• Shows full image name 

(nvcr.io/nvidia/digits:18.01)

• Icon to copy to clipboard
• Same as in image details

Docker pull shortcut
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NGC vs. NVCR

ngc.nvidia.com
• NGC = NVIDIA GPU Cloud
• Used for administrative tasks

• (a.k.a. The WebUI)

nvcr.io

• NVIDIA Container Repository
• Used for Docker tasks

Why are there two FQDNs?
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NGC API Key
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NGC API Key
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NGC API Key Generate
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NGC API Key Save
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EXERCISE

- Use the API key to login into nvcr.io

- Pull the TensorFlow container nvcr.io/nvidia/tensorflow:18.09-py3

http://nvcr.io/nvidia/tensorflow:18.02-py3
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Run a Container 
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Container Execution

Our challenge:

● Download a TensorFlow container from NGC to local machine

● Run nvcnn.py sample with Resnet-50 with synthetic ImageNet data for 200 
epochs

Quick TensorFlow Run
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Container Execution
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Container Execution
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Container Execution
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Container Execution
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Container Execution
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Container Execution

Our challenge:

● Download a TensorFlow container from NGC to local machine

● Run nvcnn.py sample with Resnet-50 with synthetic ImageNet data for 200 
epochs

● Hint: 
# docker run --runtime=nvidia --rm -ti nvcr.io/nvidia/tensorflow:18.04-py3 
./nvidia-examples/cnn/nvcnn.py -m resnet50 --num_batches=200 --fp16

Quick TensorFlow Run

http://nvcr.io/nvidia/tensorflow:18.02-py3
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Wait. What Just Happened?

1. Logged into NGC and created an API key

2. Downloaded the TensorFlow container from NGC

3. Ran nvcnn.py sample with Resnet-50 with synthetic ImageNet data for 200 
epochs

4. Profit!

That was too fast.



Keeping your Data Persistent: Docker 
Volumes



HPC Cluster Architecture



Docker Volume
Persistent Data Across Multiple Containers



Docker Volume

https://docs.docker.com/storage/volumes/ 

Persistent Data Across Containers Executions

https://docs.docker.com/storage/volumes/


Docker Volume Demo
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Exposing Ports
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Info: Accessing Container Services

Applications in a container are on their own network (‘docker0’ bridge)

Tell Docker you want to use them at runtime (remember -p ?)

What about things in the container?
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Challenge: Accessing Container Services

Our challenge:

● Launch the TensorFlow container
○ Run interactively (-ti)
○ Expose Tensorboard port 6006 (-p)

● Repeat our prior training run
○ Save log data to /tmp

● Run Tensorboard
● Visualize our training run

Hint: Remember if you only have 1 GPU in your AMI, you won’t be able to flag for 8. 

# docker run --runtime=nvidia --rm -ti -p 6006:6006 nvcr.io/nvidia/tensorflow:18.09-py3
/workspace# mpiexec --allow-run-as-root --bind-to socket -np 1 python nvidia-examples/cnn/resnet.py 
--layers=18 --precision=fp16 --num_iter=200 --log_dir=/tmp --batch_size=64
/workspace# tensorboard --logdir=/tmp

Passing through a TCP port

http://nvcr.io/nvidia/tensorflow:18.02-py3
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Solution: Accessing Container Services
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Solution: Accessing Container Services
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Solution: Accessing Container Services
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Solution: Accessing Container Services
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Solution: Accessing Container Services

Works because of Security 
Group settings!
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Extending NGC Images
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Info: Extending NGC Images
Layers layers layers

Base NGC TensorFlow Image

New/updated bash tools

New/updated python libraries

● Often the out-of-the-box image is not 
enough

● Need extra tools/applications
○ Additional layers on top of base 

image

● Dockerfile allows for building custom images
○ docker build command creates new image from set of instructions

https://docs.docker.com/engine/reference/builder/#usage
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Info: Extending NGC Images
A Dockerfile is a script that contains instructions 
to custom configure a container from a base 
image

Here are some common commands:

● FROM is Mandatory as the first instruction. It 
denotes the base image to be built from. 
Use a tag to specify the image.

● RUN = Creates a new layer with the output 
of the specified commands.

● WORKDIR = Directory the command will start 
it

● CMD = Default command executed when 
Docker container is started. Use only one 
CMD instruction in a Dockerfile.

Best practices for writing Dockerfiles
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/ 

https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/
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Challenge: Extending NGC Images

Our challenge:

● Add Jupyter to the NVIDIA TensorFlow Image
● Launch jupyter notebook automatically when the container starts

○ By default jupyter listens on port 8888
● Verify it worked!

# mkdir MyImage
# vi MyImage/Dockerfile

FROM nvcr.io/nvidia/tensorflow:18.09-py3
RUN pip install jupyter
WORKDIR /notebooks
CMD jupyter notebook --allow-root --ip=0.0.0.0

# docker build -t myimage:latest MyImage
# docker images
# docker run --runtime=nvidia --rm -ti -p 8888:8888 myimage:latest

Add Jupyter

http://nvcr.io/nvidia/tensorflow:18.02-py3
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Solution: Extending NGC Images

Use the example from the prior 
slide as content



60

Solution: Extending NGC Images

Our new image is here! 
myimage:latest
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Solution: Extending NGC Images
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Solution: Extending NGC Images
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Solution: Extending NGC Images



Push an image to a Repository

➔ Push an image or a repository to a registry

➔ If you are pushing to the NVIDIA DGX container registry an Internet 
connection is required

➔ Allows images to be shared between systems

Summary

$ docker tag nvcr.io/nvidia/digits:17.04 
nvcr.io/partner/digits:17.04

$ docker push nvcr.io/partner/digits:17.04



Info: Pushing an Image to a Repository



Info: Pushing an Image to a Repository



GPU Isolation



GPU Isolation

NV_GPU=0,1,5 nvidia-docker run --rm -it 
nvcr.io/nvidia/cuda:8.0-cudnn6-devel-ubuntu16.04

By default, NVIDIA-DOCKER will grant access to all GPUs in the system

Use NV_GPU to assign specific GPUs to the running container

Examples of GPU isolation:

NV_GPU='GPU-836c0c09,GPU-b78a60a' nvidia-docker <docker-options> 
<docker-command> <docker-args>

Running nvidia-docker isolating specific GPUs by index

Running nvidia-docker isolating specific GPUs by UUID



Challenge: GPU Isolation

➔ For the two GPU Isolation challenges below run nvidia-smi 
against the image you pulled so the container is removed 
automatically when the command finishes

➔ Use nvidia-docker with GPU isolation 
◆ GPU Isolation - Run nvidia-smi with only two (2) GPU’s
◆ GPU Isolation - Run nvidia-smi interactively with three (3) GPUs 

hint: https://github.com/NVIDIA/nvidia-docker/wiki/GPU-isolation

Individual Challenge



Solution: GPU Isolation
Summary

GPU Isolation - Run nvidia-smi with three (3) GPU’s
$ NV_GPU=0,1,4 nvidia-docker run --rm -it 
nvcr.io/nvidia/cuda:8.0-cudnn6-devel-ubuntu16.04
root@<container ID>:/# nvidia-smi
root@<container ID>:/# exit

GPU Isolation - Run nvidia-smi with two (2) GPU’s
$ NV_GPU=0,5 nvidia-docker run --rm 
nvcr.io/nvidia/cuda:8.0-cudnn6-devel-ubuntu16.04 nvidia-smi



Solution: GPU Isolation
GPU Isolation with two (2) GPUs



Solution: GPU Isolation
GPU Isolation interactively with three (3) GPUs
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