
João Paulo Navarro (jpnavarro@nvidia.com)
Solutions Architect

CONTAINERS

mailto:jpnavarro@nvidia.com

2

Agenda

- Intro
- Containers Overview
- Managing Images, Containers and Running Containers
- Installing Docker and NVIDIA Docker

Introduction

DIFFERENT ROLES. SAME GOALS.
Driving Productivity and Faster Time-to-Solutions

Developers

Speed up development with
existing building blocks

Data Scientists and
Researchers

Eliminate mundane tasks, focus on
science and research

Sysadmins

Deploy to production immediately

©2018 VMware, Inc.

OPTIMIZATIONINSTALLATION

Complex, time
consuming, and

error-prone

Requires expertise to
optimize framework

performance

IT can’t keep up with
frequent software

upgrades

Users limited to older
features and lower

performance

CHALLENGES UTILIZING AI & HPC SOFTWARE

MAINTAINENCEPRODUCTIVITYEXPERTISE

Building AI-centric
solutions requires

expertise

©2018 VMware, Inc.

OPTIMIZED
SOFTWARE

FASTER
DEPLOYMENTS

Eliminates installations.
Simply Pull & Run the

app

Key DL frameworks
updated monthly for perf

optimization

Empowers users to
deploy the latest versions

with IT support

Better Insights and faster
time-to-solution

CONTAINERS – SIMPLIFYING AI & HPC WORKFLOWS

ZERO
MAINTENANCE

HIGHER
PRODUCTIVITY

EMBEDDING
EXPERTISE

Deliver greater value,
faster

GPU-OPTIMIZED SOFTWARE CONTAINERS
Over 50 Containers on NGC – ngc.nvidia.com

DEEP LEARNING MACHINE LEARNING

HPC VISUALIZATION

INFERENCE

GENOMICS

NAMD | GROMACS |
more

RAPIDS | H2O | more TensorRT | DeepStream | more

Parabrick
s ParaView | IndeX | more

TensorFlow | PyTorch | more

NGC CONTAINERS: ACCELERATING WORKFLOWS

Simplifies Deployments

- Eliminates complex, time-consuming builds and
installs

Get started in minutes

- Simply Pull & Run the app

Portable

- Deploy across various environments, from test to
production with minimal changes

WHY CONTAINERS
Optimized for Performance
- Monthly DL container releases offer latest features and

superior performance on NVIDIA GPUs

Scalable Performance

- Supports multi-GPU & multi-node systems for scale-up &
scale-out environments

Designed for Enterprise & HPC environments

- Supports Docker & Singularity runtimes

Run Anywhere

- Pascal/Volta/Turing-powered NVIDIA DGX, PCs,
workstations, and servers

- From Core to the Edge

- On-Prem to Hybrid to Cloud

WHY NGC CONTAINERS

Container Overview

10

Containers

• Portable and reproducible builds
• Ease of deployment
• Run across heterogeneous CUDA toolkit environments (sharing the

host driver)
• Bare Metal Performance
• Facilitate collaboration

Virtual Machine vs. Container

Not so similar

11

Not so similar

App 1 App 1 App 2

Bins / Libs Bins / Libs Bins / Libs

Guest OS Guest OS Guest OS

Hypervisor

Host Operating System

Server Infrastructure Server Infrastructure

Host Operating System

App 1 App 1 App 2

Bins / Libs Bins / Libs Bins / Libs

Docker Engine

Virtual Machines Containers

12

NVIDIA Container Runtime
➔ Colloquially called “nvidia-docker”
➔ Docker containers are hardware-agnostic and

platform-agnostic
➔ NVIDIA GPUs are specialized hardware that require the NVIDIA

driver
➔ Docker does not natively support NVIDIA GPUs with containers
➔ NVIDIA Container Runtime makes the images agnostic of the

NVIDIA driver
◆ Required character devices and driver files are mounted

when starting the container on the target machine
◆ This makes Docker images portable while still leveraging

NVIDIA GPUshttps://github.com/NVIDIA/nvidia-docker

https://github.com/NVIDIA/nvidia-docker

13

Docker

Image
Docker images are the basis of containers. An Image is an ordered collection of root filesystem
changes and the corresponding execution parameters for use within a container runtime. An
image typically contains a union of layered filesystems stacked on top of each other. An image
does not have state and it never changes.

Container
A container is a runtime instance of a docker image.
A Docker container consists of
● A Docker image
● Execution environment
● A standard set of instructions

https://docs.docker.com/engine/reference/glossary/

Definitions

https://docs.docker.com/engine/reference/glossary/#container
https://docs.docker.com/engine/reference/glossary/#image

Managing Images, Containers and
Running Containers

Managing Images and Containers

List Images:

Remove an Image:

Remove all of your images:
The flag means "all" and the flag
makes the output a list of imageID's.

Common Commands
List Containers:

Stop a running Container:

Remove a Container:

Remove all containers:
Remove all running containers (will try to force a
shutdown of the container if it is running.)

● Refer to images and containers by their ID hash

● The first few characters of the image/container hash will do

Docker images detail

16

Image Name = Repository:Tag ImageID = Unique Hash

17

Running Containers

Starts Tensorflow with ports, volumes, and
console (All 1 line):

docker run and option

docker run Options

➔ enable GPU
capabilities

➔ remove the container after it exits
➔ or interactive, and connect a

"tty"
➔ run in the background
➔ give the container a name
➔ port map from host to

container
➔ map storage volume

from host to container (bind mount) i.e.
bind the directory in your home
directory to in the container

18

Navigating the NGC WebUI

19

NVIDIA GPU Cloud

Our challenge:

● Sign up for a free NGC account at www.nvidia.com/ngcsignup

● Login to the WebUI

● Generate an API key for Docker to use

How do we actually use it?

http://www.nvidia.com/ngcsignup

20

What is an API Key?

Your API key represents your credentials

● Used for programmatic interaction (e.g., docker, REST API, etc.)
● Uniquely identifies you (think “Username & Password”)
● There can be only one (regenerating your API key invalidates the old one)

WebUI at ngc.nvidia.com: Use Username & Password

Programmatic interface at nvcr.io: Use API Key

(And why do you need one?)

21

NGC Sign-up

22

NGC Access

23

NGC WebUI

When you login…
• Collections

• Containers List

• Instructions and Info

• Image specifics

• Docker pull shortcut

Where it all begins

24

NGC WebUI

When you select a container
• Description on what the image

contains

• Usually examples on running it

• Often has links for more
information and tutorials

Instructions and Information

25

NGC WebUI

List of images for that container
• Tag (nvidia/caffe:18.01)

• Follows YY.MM format

• Creation date
• Updated monthly

• Shortcut to copy docker
pull command to clipboard

Image Specifics

26

NGC WebUI

Shortcut to the latest at the top
• Shows full image name

(nvcr.io/nvidia/digits:18.01)

• Icon to copy to clipboard
• Same as in image details

Docker pull shortcut

27

NGC vs. NVCR

ngc.nvidia.com
• NGC = NVIDIA GPU Cloud
• Used for administrative tasks

• (a.k.a. The WebUI)

nvcr.io

• NVIDIA Container Repository
• Used for Docker tasks

Why are there two FQDNs?

28

NGC API Key

29

NGC API Key

30

NGC API Key Generate

31

NGC API Key Save

32

EXERCISE

- Use the API key to login into nvcr.io

- Pull the TensorFlow container nvcr.io/nvidia/tensorflow:18.09-py3

http://nvcr.io/nvidia/tensorflow:18.02-py3

33

Run a Container

34

Container Execution

Our challenge:

● Download a TensorFlow container from NGC to local machine

● Run nvcnn.py sample with Resnet-50 with synthetic ImageNet data for 200
epochs

Quick TensorFlow Run

35

Container Execution

36

Container Execution

37

Container Execution

38

Container Execution

39

Container Execution

40

Container Execution

Our challenge:

● Download a TensorFlow container from NGC to local machine

● Run nvcnn.py sample with Resnet-50 with synthetic ImageNet data for 200
epochs

● Hint:
docker run --runtime=nvidia --rm -ti nvcr.io/nvidia/tensorflow:18.04-py3
./nvidia-examples/cnn/nvcnn.py -m resnet50 --num_batches=200 --fp16

Quick TensorFlow Run

http://nvcr.io/nvidia/tensorflow:18.02-py3

41

Wait. What Just Happened?

1. Logged into NGC and created an API key

2. Downloaded the TensorFlow container from NGC

3. Ran nvcnn.py sample with Resnet-50 with synthetic ImageNet data for 200
epochs

4. Profit!

That was too fast.

Keeping your Data Persistent: Docker
Volumes

HPC Cluster Architecture

Docker Volume
Persistent Data Across Multiple Containers

Docker Volume

https://docs.docker.com/storage/volumes/

Persistent Data Across Containers Executions

https://docs.docker.com/storage/volumes/

Docker Volume Demo

47

Exposing Ports

48

Info: Accessing Container Services

Applications in a container are on their own network (‘docker0’ bridge)

Tell Docker you want to use them at runtime (remember -p ?)

What about things in the container?

49

Challenge: Accessing Container Services

Our challenge:

● Launch the TensorFlow container
○ Run interactively (-ti)
○ Expose Tensorboard port 6006 (-p)

● Repeat our prior training run
○ Save log data to /tmp

● Run Tensorboard
● Visualize our training run

Hint: Remember if you only have 1 GPU in your AMI, you won’t be able to flag for 8.

docker run --runtime=nvidia --rm -ti -p 6006:6006 nvcr.io/nvidia/tensorflow:18.09-py3
/workspace# mpiexec --allow-run-as-root --bind-to socket -np 1 python nvidia-examples/cnn/resnet.py
--layers=18 --precision=fp16 --num_iter=200 --log_dir=/tmp --batch_size=64
/workspace# tensorboard --logdir=/tmp

Passing through a TCP port

http://nvcr.io/nvidia/tensorflow:18.02-py3

50

Solution: Accessing Container Services

51

Solution: Accessing Container Services

52

Solution: Accessing Container Services

53

Solution: Accessing Container Services

54

Solution: Accessing Container Services

Works because of Security
Group settings!

55

Extending NGC Images

56

Info: Extending NGC Images
Layers layers layers

Base NGC TensorFlow Image

New/updated bash tools

New/updated python libraries

● Often the out-of-the-box image is not
enough

● Need extra tools/applications
○ Additional layers on top of base

image

● Dockerfile allows for building custom images
○ docker build command creates new image from set of instructions

https://docs.docker.com/engine/reference/builder/#usage

57

Info: Extending NGC Images
A Dockerfile is a script that contains instructions
to custom configure a container from a base
image

Here are some common commands:

● FROM is Mandatory as the first instruction. It
denotes the base image to be built from.
Use a tag to specify the image.

● RUN = Creates a new layer with the output
of the specified commands.

● WORKDIR = Directory the command will start
it

● CMD = Default command executed when
Docker container is started. Use only one
CMD instruction in a Dockerfile.

Best practices for writing Dockerfiles
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/

https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/

58

Challenge: Extending NGC Images

Our challenge:

● Add Jupyter to the NVIDIA TensorFlow Image
● Launch jupyter notebook automatically when the container starts

○ By default jupyter listens on port 8888
● Verify it worked!

mkdir MyImage
vi MyImage/Dockerfile

FROM nvcr.io/nvidia/tensorflow:18.09-py3
RUN pip install jupyter
WORKDIR /notebooks
CMD jupyter notebook --allow-root --ip=0.0.0.0

docker build -t myimage:latest MyImage
docker images
docker run --runtime=nvidia --rm -ti -p 8888:8888 myimage:latest

Add Jupyter

http://nvcr.io/nvidia/tensorflow:18.02-py3

59

Solution: Extending NGC Images

Use the example from the prior
slide as content

60

Solution: Extending NGC Images

Our new image is here!
myimage:latest

61

Solution: Extending NGC Images

62

Solution: Extending NGC Images

63

Solution: Extending NGC Images

Push an image to a Repository

➔ Push an image or a repository to a registry

➔ If you are pushing to the NVIDIA DGX container registry an Internet
connection is required

➔ Allows images to be shared between systems

Summary

$ docker tag nvcr.io/nvidia/digits:17.04
nvcr.io/partner/digits:17.04

$ docker push nvcr.io/partner/digits:17.04

Info: Pushing an Image to a Repository

Info: Pushing an Image to a Repository

GPU Isolation

GPU Isolation

NV_GPU=0,1,5 nvidia-docker run --rm -it
nvcr.io/nvidia/cuda:8.0-cudnn6-devel-ubuntu16.04

By default, NVIDIA-DOCKER will grant access to all GPUs in the system

Use NV_GPU to assign specific GPUs to the running container

Examples of GPU isolation:

NV_GPU='GPU-836c0c09,GPU-b78a60a' nvidia-docker <docker-options>
<docker-command> <docker-args>

Running nvidia-docker isolating specific GPUs by index

Running nvidia-docker isolating specific GPUs by UUID

Challenge: GPU Isolation

➔ For the two GPU Isolation challenges below run nvidia-smi
against the image you pulled so the container is removed
automatically when the command finishes

➔ Use nvidia-docker with GPU isolation
◆ GPU Isolation - Run nvidia-smi with only two (2) GPU’s
◆ GPU Isolation - Run nvidia-smi interactively with three (3) GPUs

hint: https://github.com/NVIDIA/nvidia-docker/wiki/GPU-isolation

Individual Challenge

Solution: GPU Isolation
Summary

GPU Isolation - Run nvidia-smi with three (3) GPU’s
$ NV_GPU=0,1,4 nvidia-docker run --rm -it
nvcr.io/nvidia/cuda:8.0-cudnn6-devel-ubuntu16.04
root@<container ID>:/# nvidia-smi
root@<container ID>:/# exit

GPU Isolation - Run nvidia-smi with two (2) GPU’s
$ NV_GPU=0,5 nvidia-docker run --rm
nvcr.io/nvidia/cuda:8.0-cudnn6-devel-ubuntu16.04 nvidia-smi

Solution: GPU Isolation
GPU Isolation with two (2) GPUs

Solution: GPU Isolation
GPU Isolation interactively with three (3) GPUs

João Paulo Navarro (jpnavarro@nvidia.com)
Solutions Architect

CONTAINERS

mailto:jpnavarro@nvidia.com

