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Moore's Law abandoned serial programming around 2004

Courtesy Liberty Computer Architecture Research Group



But Moore’s Law is only beginning to stumble now.

High Volume 
Manufacturing

2004 2006 2008 2010 2012 2014 2018 2021

Feature Size 90nm 65nm 45nm 32nm 22nm 14nm 10nm 7nm

Integration Capacity

(Billions of 
Transistors)

2 4 8 16 32 64 128 256

Intel process technology capabilities

50nm

Transistor for 
90nm Process

Source: Intel

Influenza Virus
Source: CDC



…but our metrics are less clear.

After a while, “there was no one design rule that people could point to and 
say, ‘That defines the node name’ … The minimum dimensions are getting 
smaller, but I’m the first to admit that I can’t point to the one dimension 
that’s 32 nm or 22 nm or 14 nm. Some dimensions are smaller than the 
stated node name, and others are larger.”

Mark Bohr, Senior fellow at Intel.
From The Status of Moore's Law: It's Complicated (IEEE Spectrum)



Now tradeoffs are stealing these gains.

The density and power levels on a state-of-the-art chip have forced designers to compensate by adding:

⚫ error-correction circuitry

⚫ redundancy

⚫ read- and write-boosting circuitry for failing static RAM cells

⚫ circuits to track and adapt to performance variations

⚫ complicated memory hierarchies to handle multicore architectures.

All of those extra circuits add area.  Some analysts have concluded that when you factor those circuits in, chips are 
no longer twice as dense from generation to generation. One such analysis suggests, the density improvement over 
the past three generations, from 2007 on, has been closer to 1.6 than 2.

And cost per transistor has gone up for the first time ever:

– 2012   20M  28nm transistors/dollar

– 2015   19M  16nm transistors/dollar



At end of day, we keep using all those new transistors.



That Power and Clock Inflection Point in 2004…
didn’t get better.

Source: Kogge and Shalf, IEEE CISE

Courtesy Horst Simon, LBNL

Fun fact: At 100+ Watts and <1V, currents are beginning to exceed 100A at the point of load!



Not a new problem, just a new scale…

CPU
Power
W)

Cray-2 with cooling tower in foreground, circa 1985



How to get same number of transistors to give us more performance without 
cranking up power?
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And how to get more performance from more transistors with the same 
power.

Area      = 1

Voltage = 1

Freq = 1

Power   = 1

Perf = 1

Area      =  2

Voltage =  0.85

Freq =  0.85

Power   =  1

Perf =  ~1.8

Frequency
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Power
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Performance
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SINGLE CORE DUAL CORE

RULE OF THUMB
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Processor Year Vector Bits SP FLOPs / core / 

cycle
Cores FLOPs/cycle

Pentium III 1999 SSE 128 3 1 3

Pentium IV 2001 SSE2 128 4 1 4

Core 2006 SSE3 128 8 2 16

Nehalem 2008 SSE4 128 8 10 80

Sandybridge 2011 AVX 256 16 12 192

Haswell 2013 AVX2 256 32 18 576

KNC 2012 AVX512 512 32 64 2048

KNL 2016 AVX512 512 64 72 4608

Skylake 2017 AVX512 512 96 28 2688

Single Socket Parallelism



Putting It All Together



Many Levels and Types of Parallelism

⚫ Vector (SIMD)

⚫ Instruction Level (ILP)

– Instruction pipelining

– Superscaler (multiple instruction units)

– Out-of-order

– Register renaming

– Speculative execution

– Branch prediction 

⚫ Multi-Core (Threads)

⚫ SMP/Multi-socket

⚫ Accelerators: GPU & MIC

⚫ Clusters

⚫ MPPs

Compiler
(not your problem)

OpenMP

OpenACC

MPI

Also Important

• ASIC/FPGA/DSP

• RAID/IO



The pieces fit like this…

OpenMP

OpenACC

MPI



The Long-awaited Exascale - This year!

Courtesy Horst Simon, LBNL



Staying on track to Exascale

First boost: many-core/accelerator

Second Boost:  3D (2016 – 2020)

Third Boost:  SiPh (2020 – 2024)

• We will be able to reach usable 

Exaflops for ~20 MW by 2021

• But at what cost?

• Will any of the other technologies give 

additional boosts after 2025?

Courtesy Horst Simon, LBNL



Top 10 Systems as of June 2020
# Site Manufacturer Computer CPU

Interconnect
[Accelerator]

Cores Rmax
(Tflops)

Rpeak
(Tflops)

Power
(MW)

1
RIKEN Center for Computational 
Science
Japan

Fujitsu
Fugaku ARM 8.2A+ 48C 2.2GHz

Torus Fusion Interconnect
7,299,072 415,530 513,854 28.3

2
DOE/SC/ORNL
United States

IBM
Summit Power9 22C 3.0 GHz

Dual-rail Infiniband EDR
NVIDIA V100

2,414,592 148,600 200,794 10.1

3
DOE/NNSA/LLNL
United States

IBM
Sierra Power9 3.1 GHz 22C

Infiniband EDR
NVIDIA V100

1,572,480 94,640 125,712 7.4

4
National Super Computer Center 
in Wuxi
China

NRCPC
Sunway TaihuLight Sunway SW26010 260C 

1.45GHz
10,649,600 93,014 125,435 15.3

5

National Super Computer Center 
in Guangzhou
China

NUDT

Tianhe-2
(MilkyWay-2)

Intel Xeon E5-2692 2.2 GHz
TH Express-2
Intel Xeon Phi 31S1P

4,981,760 61,444 100,678 18.4

6
Eni S.p.A
Italy Dell

HPc5 Xeon 24C 2.1 GHz
Infiniband HDR
NVIDIA V100

669,760 35,450 51,720 2.2

7
Eni S.p.A
Italy NVIDIA

Selene EPYC 64C 2.25GHz
Infiniband HDR
NVIDIA A100

272,800 27,580 34,568 1.3

8
Texas Advanced Computing 
Center/Univ. of Texas
United States

Dell
Frontera Intel Xeon 8280 28C  2.7 GHz

InfiniBand HDR
448,448 23,516 38,745

9
Cineca
Italy

IBM
Marconi100 Power9 16C 3.0 GHz

Infiniband EDR
NVIDIA V100

347,776 21,640 29,354 1.5

10
Swiss National Supercomputing 
Centre (CSCS)
Switzerland

Cray
Piz Daint
Cray XC50

Xeon E5-2690 2.6 GHz
Aries
NVIDIA P100

387,872 21,230 27,154 2.4



Today

• Pflops computing fully established with more than 500 machines

• The field is thriving

• Interest in supercomputing is now worldwide, and growing 
in many new markets

• Exascale projects in many countries and regions

Courtesy Horst Simon, LBNL



USA: ECP by the Numbers

A seven-year, $1.7 B R&D effort that launched in 2016

1

Six core DOE National Laboratories: Argonne, Lawrence  
Berkeley, Lawrence Livermore, Oak Ridge, Sandia, LosAlamos

• Staff from most of the 17 DOE national laboratories take part  
in the project

More than 100 top-notch R&D teams

Three technical focus areas: Hardware and Integration,Software  
Technology, Application Development supported by a Project  
Management Office

Hundreds of consequential milestones delivered on  
schedule and within budget since project inception

7
YEARS

$1.7B

6
CORE DOE

LABS

3

FOCUS  
AREAS

100
R&D TEAMS

1000
RESEARCHERS



The Plan



System Designs

System Performance Power Interconnect Node

Aurora
(ANL)

> 1 EF 100 GB/s Cray Slingshot Dragonfly 2 Intel Xeon CPU +

6 Intel Xe GPUs

El Capitan
(LLNL)

> 1.5 EF 30-40 MW 100 GB/s Cray Slingshot Dragonfly AMD Epyc CPU +

4 Radeon GPUs

Frontier
(ORNL)

> 1.5 EF 100 GB/s Cray Slingshot Dragonfly AMD Epyc CPU +

4 Radeon GPUs

Perlmutter
(LBNL)

Cray Slingshot Dragonfly 2 AMD Epyc CPU +

4 Volta GPUs



One of the many groups established to enable this outcome (the Advanced Scientific Computing Advisory 
Committee) puts forward this list of 10 technical challenges:

⚫ Energy efficient circuit, power and cooling technologies.

⚫ High performance interconnect  technologies.

⚫ Advanced memory technologies to dramatically improve capacity and bandwidth.

⚫ Scalable system software that is power and resilience aware.

⚫ Data management software that can handle the volume, velocity and diversity of data-storage

⚫ Programming environments to express massive parallelism, data locality, and resilience.

⚫ Reformulating science problems and refactoring solution algorithms for exascale.

⚫ Ensuring correctness in the face of faults, reproducibility, and algorithm verification.

⚫ Mathematical optimization and uncertainty quantification for discovery, design, and decision.

⚫ Software engineering and supporting structures to enable scientific productivity.

Obstacles?



It is not just “exaflops” – we are changing the whole computational model
Current programming systems have WRONG optimization targets

⚫ Peak clock frequency as primary limiter for 
performance improvement

⚫ Cost: FLOPs are biggest cost for system: 
optimize for compute

⚫ Concurrency: Modest growth of parallelism 
by adding nodes

⚫ Memory scaling: maintain byte per flop 
capacity and bandwidth

⚫ Locality: MPI+X model (uniform costs within 
node & between nodes)

⚫ Uniformity:  Assume uniform system 
performance

⚫ Reliability: It’s the hardware’s problem

Old Constraints New Constraints
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Fundamentally breaks our current programming paradigm and computing 

ecosystem

• Power is primary design constraint for future 

HPC system design

• Cost: Data movement dominates: optimize to 

minimize data movement

• Concurrency: Exponential growth of parallelism 

within chips

• Memory Scaling: Compute growing 2x faster 

than capacity or bandwidth

• Locality: must reason about data locality and 

possibly topology

• Heterogeneity: Architectural and performance 

non-uniformity increase

• Reliability: Cannot count on hardware protection 

alone

Adapted from John Shalf



End of Moore’s Law Will Lead to New Architectures 

TODAY

NEUROMORPHIC
QUANTUM

COMPUTING

BEYOND CMOS

Non-von 

Neumann

von Neumann

Beyond CMOSCMOS

ARCHITECTURE

TECHNOLOGY

Courtesy Horst Simon, LBNL



It would only be the 6th paradigm.



• Straight forward extrapolation results in a real-time human brain scale 

simulation at about 1 - 10 Exaflop/s with 4 PB of memory

• Current predictions envision Exascale computers in 2021 with a power 

consumption of at best 20 - 30 MW

• The human brain takes 20W

• Even under best assumptions in 2020 our brain will still be a million times 

more power efficient  

We can do better.  We have a role model.

Courtesy Horst Simon, LBNL



It has become a mantra of contemporary programming philosophy that developer hours are so much more 
valuable than hardware, that the best design compromise is to throw more hardware at slower code.

This might well be valid for some Java dashboard app used twice a week by the CEO.  But this has spread and 
results in…

The common observation that a modern PC (or phone) seems to be more laggy than one from a few generations 
ago that had literally one thousandth the processing power.

Moore’s Law has been the biggest enabler (or more accurately rationalization) for this trend.  If Moore’s Law 
does indeed end, then progress will require good programming.

No more garbage collecting, script languages.  I am looking at you, Java, Python, Matlab.

As a last resort, we could will learn to program again.



Of course you should. Here are a few reassuring words that software at 
exascale is not an afterthought, followed by more than a few application 

examples.

Do you really care about software?



ECP application domains.



SW engineering
• Productivity tools.

• Models, processes.

Libraries
• Solvers, etc.

• Interoperable.

Frameworks & tools
• Doc generators.

• Test, build framework.

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
• Reacting flow, etc.

• Reusable.

xSDK functionality, Dec 2018

Tested on key machines at ALCF,  

NERSC, OLCF, also Linux, Mac OS X

xSDK Version 0.4.0: December 2018 (even better today)

Multiphysics ApplicationC

Application B

Impact: Improved code quality,  
usability, access, sustainability

Foundation for work on  
performance portability, deeper  

levels of package interoperability

Each xSDK member package uses or  

can be used with one or more xSDK  

packages, and the connecting interface  

is regularly tested for regressions.

https://xsdk.info

Application A

Alquimia hypre

Trilinos

PETSc

SuperLU
More  

libraries

PFLOTRAN

More domain  

components

MFEM

SUNDIALS

HDF5

BLAS

More  
external  
software

STRUMPACK

SLEPc
AMReX

PUMI

Omega_h

DTK Tasmanian

PHIST

deal.II

PLASMA

December 2018
• 17 math libraries
• 2 domain

components

• 16 mandatory  
xSDK community  
policies

• Spack xSDK
installer

MAGMA

5

9



The planned ECP ST SDKs will span all technology areas

6

0



Endless apps…

Appendix



CEED is targeting several ECP applications

Additive Manufacturing
(ExaAM)

Climate (E3SM)

Magnetic
Fusion

(WDMApp)
Modular Nuclear  

Reactors  
(ExaSMR)

Wind Energy (ExaWind)

Subsurface (GEOS)

Urban systems (Urban)
Compressible flow (MARBL)

Combustion (Nek5000)

PI: Tzanio Kolev (LLNL)

2
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ECP’s Adaptive Mesh Refinement Co-Design Center:AMReX

• Develop and deploy software to support block-structured

adaptive mesh refinement on exascale architectures

– Core AMR functionality

– Particles coupled to AMR meshes

– Embedded boundary (EB) representation of complex geometry

– Linear solvers

– Supports two modalities of use

• Library support forAMR

• Framework for constructing AMRapplications

• Provide direct support to ECP applications that  

need AMR for their application

• Evaluate software technologies and integrate

with AMReXwhen appropriate

• Interact with hardware technologies / vendors

PI: John Bell (LBNL)

Application Particles ODEs Linear

Solvers

EB

Combustion X X X X

Multiphase X X X

Cosmology X X X

Astrophysics X X X

Accelerators X
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ECP’s Co-Design Center for Online Data Analysis and Reduction
CODAR

PI: Ian Foster (ANL)

Goal: Replace the activities in HPC workflow that have been mediated through file I/O with in-situ methods /  
workflows. data reduction, analysis, code coupling, aggregation (e.g. parameter studies).

Cross-cutting tools:

• Workflow setup, manager (Cheetah, Savanna); Data coupler (ADIOS-SST); Compression methods  
(MGARD, FTK, SZ), compression checker (Z-checker)

• Performance tools (TAU, Chimbuco, SOSFlow)



30

ECP’s Co-Design Center for Particle Applications: CoPA

Goal: Develop algorithms and software for  
particle methods,

Cross-cutting capabilities:

• Specialized solvers for quantum  
molecular dynamics (Progress / BML).

• Performance-portable libraries for  
classical particle methods in MD, PDE  
(Cabana).

• FFT-based Poisson solvers for  
long-range forces.

Technical approach:

• High-level C++ APIs, plus a Fortran interface (Cabana).

• Leverage existing / planned FFT software.

• Extensive use of miniapps / proxy apps as part of the development process.

PI: Sue Mniszewski (LANL) recently replacing Tim Germann (LANL), who is taking on a larger role in ECP



ECP’s Co-Design Center for Machine Learning: ExaLearn

PI: Frank Alexander(BNL)

3

1

Bringing together experts from 8 DOE Laboratories

• AI has the potential to accelerate scientific discovery or enable prediction in areas currently too  
complex for direct simulation (ML for HPC and HPC for ML)

• AI use cases of interest to ECP:

– Classification and regression, including but not limited to image classification and analysis, e.g. scientific data output  
from DOE experimental facilities or from national security programs.

– Surrogate models in high-fidelity and multiscale simulations, including uncertainty quantification and error estimation.

– Structure-to-function relationships, including genome-to-phenome, the prediction of materials performance based on  
atomistic structures, or the prediction of performance margins based on manufacturing data.

– Control systems, e.g., for wind plants, nuclear power plants, experimental steering and autonomous vehicles.

– Inverse problems and optimization. This area would include, for example, inverse imaging and materials design.

• Areas in need of research

– Data quality and statistics

– Learning algorithms

– Physics-Informed AI

– Verification and Validation

– Performance and scalability

– Workflow and deployment

Expected Work Product: A Toolset That . . .
• Has a line-of-sight to exascale computing, e.g. through using exascale platforms directly, or  

providing essential components to an exascaleworkflow

• Does not replicate capabilities easily obtainable from existing, widely-available packages

• Builds in domain knowledge where possible “Physics”-based ML and AI

• Quantifies uncertainty in predictive capacity

• Is interpretable

• Is reproducible

• Tracks provenance



Machine Learning in the Light Source Workflow

Compressor

Nodes

Local SystemsBeam Line Control and  

Data Acquisition (DAQ)

Network Remote Exascale HPC

Exascale

Supercomputer

10 GB/s - 1Tb/s

Online  

Monitoring and  

Fast Feedback

ML for fast analysis  

at the experimental  

facility. Uses models  

learned remotely.

ML to control

the beam line

parameters Simulate  

experiments, beam  

line control and  

diffraction images at  

scale to create data  

for training

ML networks for image  

classification, feature  

detection and solving inverse  

problems (how to change  

experiment params to get  

desired experiment result)

DAQ

Model

Model

Data

TB/s

Data Data Data Data

Model

Model

Model
Model

ML to design

light source

beam lines
ML at DAQ to

control data as

it is acquired

ML for data  

compression  

(e.g. hit finding).

Use models

learned remotely.

PI: Frank Alexander(BNL)

3
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Turbine Wind Plant Efficiency
(Mike Sprague, NREL)

• Harden wind plant design and layout  
against energy loss susceptibility

• Increase penetration of wind energy

Challenges: linear solver perf in strong  
scale limit; manipulation of large  
meshes; overset of structured &  
unstructured grids; communication-
avoiding linear solvers

Additive Manufacturing (AM) of  
Qualifiable Metal Parts
(John Turner, ORNL)

• Accelerate the widespread adoption
of AM by enabling routine fabrication
of qualifiable metal parts

Challenges: capturing unresolved  
physics; multi-grid linear solver  
performance; coupled physics

ExaWind ExaAM EQSIM

Earthquake Hazard Risk Assessment
(David McCallen, LBNL)

• Replace conservative and costly  
earthquake retrofits with safe  
purpose-fit retrofits and designs

Challenges: full waveform inversion  
algorithms

Exascale apps can deliver transformative products and solutions



EQSIM: Understanding and predicting earthquake phenomenon

Vertical motion Horizontal motion
Site  

ground  

motions

Surface waves

Body waves

Ground motions  

tend to be very  

site specificSource

Path

Site

PI: David McCallen (LBNL)

3
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EQSIM: The Exascale “Big Lift” – regional ground motion  
simulations at engineering frequencies

PI: David McCallen (LBNL)

3
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Scale-up of Clean Fossil Fuel  
Combustion
(Madhava Syamlal, NETL)

• Commercial-scale demonstration of  
transformational energy technologies
– curbing CO2 emissions at fossil
fuel power plants by 2030

Challenges: load balancing; strong
scaling thru transients

Biofuel Catalyst Design
(Mark Gordon, Ames)

• Design more robust and selective  
catalysts orders of magnitude more  
efficient at temperatures hundreds of  
degrees lower

Challenges: weak scaling of overall  
problem; on-node performance of  
molecular fragments

MFIX-Exa GAMESS EXAALT

Materials for Extreme Environments
(Danny Perez, LANL)

• Simultaneously address time, length,  
and accuracy requirements for  
predictive microstructural evolution  
of materials

Challenges: SNAP kernel efficiency on  
accelerators; efficiency of DFTB  
application on accelerators

Exascale apps can deliver transformative products and solutions

38



Design and Commercialization of  
Small Modular Reactors
(Steve Hamilton, ORNL)

• Virtual test reactor for advanced
designs via experimental-quality
simulations of reactor behavior

Challenges: existing GPU-based MC  
algorithms require rework for hardware  
less performant for latency-bound  
algorithms with thread divergence;  
performance portability with OCCA &  
OpenACC not achievable; insufficient  
node memory for adequate CFD + MC  
coupling

Carbon Capture, Fossil Fuel  
Extraction, Waste Disposal  
(Carl Steefel, LBNL)

• Reliably guide safe long-term  
consequential decisions about  
storage, sequestration, and  
exploration

Challenges: performance of Lagrangian  
geomechanics; adequacy of Lagrangian  
crack mechanics) + Eulerian (reaction,  
advection, diffusion) models; parallel  
HDF5 for coupling

ExaSMR Subsurface QMCPACK

Materials for Extreme Environments
(Paul Kent, ORNL)

• Find, predict and control materials  
and properties at the quantum level  
with unprecedented accuracy for the  
design novel materials that rely on  
metal to insulator transitions for high  
performance electronics, sensing,  
storage

Challenges: minimizing on-node  
memory usage; parallel on-node  
performance of Markov-chain Monte  
Carlo

Exascale apps can deliver transformative products and solutions
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Reliable and Efficient Planning of the  
Power Grid
(Henry Huang, PNNL)

• Optimize power grid planning,
operation, control and improve
reliability and efficiency

Challenges: parallel performance of  
nonlinear optimization based on  
discrete algebraic equations and  
possible mixed-integer programming

ExaSGD Combustion-PELE

High-Efficiency, Low-Emission  
Combustion Engine Design  
(Jackie Chen, SNL)

• Reduce or eliminate current  
cut-and-try approaches for  
combustion system design

Challenges: performance of chemistry  
ODE integration on accelerated  
architectures; linear solver performance  
for low-Mach algorithm; explicit  
LES/DNS algorithm not stable

Exascale apps can deliver transformative products and solutions
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Accurate Regional Impact  
Assessment in Earth Systems  
(Mark Taylor, SNL)

• Forecast water resources and severe  
weather with increased confidence;  
address food supply changes

Challenges: MMF approach for cloud-
resolving model has large biases;  
adequacy of Fortran MPI+OpenMP for  
some architectures; Support for  
OpenMP and OpenACC

Catalytic Conversion of Biomass-
Derived Alcohols
(Thom Dunning, PNNL)

• Develop new optimal catalysts while  
changing the current design  
processes that remain costly, time  
consuming, and dominated by trial-
and-error

Challenges: computation of energy  
gradients for coupled-cluster  
implementation; on- and off-node  
performance

E3SM-MMF NWChemEx ExaBiome

Metagenomics for Analysis of  
Biogeochemical Cycles  
(Kathy Yelick, LBNL)

• Discover knowledge useful for  
environmental remediation and the  
manufacture of novel chemicals and  
medicines

Challenges: Inability of message  
injection rates to keep up with core  
counts; efficient and performant  
implementation of UPC, UPC++,  
GASNet; GPU performance; I/O  
performance

Exascale apps can deliver transformative products and solutions
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E3SM-Multiscale Modeling Framework (MMF)
Cloud Resolving Climate Model for E3SM

• Develop capability to assess regional impacts of climate change on the water cycle that directly affect the US  
economy such as agriculture and energy production.

• Cloud resolving climate model is needed to reduce major  
systematic errors in climate simulations due to structural  
uncertainty in numerical treatments of convection – such as  
convective storm systems

• Challenge: cloud resolving climate model using traditional  
approaches requires zettascale resources

• E3SM “conventional” approach:

– Run the E3SM model with a global cloud resolving atmosphere and
eddy resolving ocean.

• 3 km atmosphere/land (7B grid points) and 15-5 km ocean/ice (1B gridpoints)

– Achieve throughput rate of 5 SYPD to perform climate simulation campaigns including a 500 year control simulation

– Detailed benchmarks on KNL and v100 GPUs show negligible speedups compared to conventional CPUs

• Low arithmetic intensity of most of the code; throughput requirements lead to strong scaling and low work per node.

• E3SM-MMF: Use a multiscale approach ideal for new architectures to achieve cloud resolving convection on Exascale

– Exascale will make “conventional” cloud resolving simulations routine for shorter simulations (process studies, weatherprediction)

– For cloud resolving climate simulations, we need fundamentally new approaches to take advantage of exascaleresources

Convective storm system nearing the Chicago metropolitan area  
http://www.spc.noaa.gov/misc/AbtDerechos/derechofacts.htm

PI: Mark Taylor (SNL)

http://www.spc.noaa.gov/misc/AbtDerechos/derechofacts.htm


Cosmological Probe of the Standard  
Model of Particle Physics
(Salman Habib, ANL)

• Unravel key unknowns in the  
dynamics of the Universe: dark  
energy, dark matter, and inflation

Challenges: subgrid model accuracy;  
OpenMP performance on GPUs; file  
system stability and availabilty

Validate Fundamental Laws of Nature
(Andreas Kronfeld, FNAL)

• Correct light quark masses;  
properties of light nuclei from first  
principles; <1% uncertainty in simple  
quantities

Challenges: performance of critical  
slowing down; reducing network traffic  
to reduce system interconnect  
contention; strong scaling performance  
to mitigate reliance on checkpointing

ExaSky LatticeQCD WarpX

Plasma Wakefield Accelerator Design
(Jean-Luc Vay, LBNL)

• Virtual design of 100-stage 1 TeV  
collider; dramatically cut accelerator  
size and design cost

Challenges: scaling of Maxwell FFT-
based solver; maintaining efficiency of  
large timestep algorithm; load balancing

Exascale apps can deliver transformative products and solutions
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High-Fidelity Whole Device  
Modeling of Magnetically  
Confined Fusion Plasmas  
(Amitava Bhattacharjee,  
PPPL)

• Prepare for ITER exps and  
increase ROI of validation  
data and understanding

• Prepare for beyond-ITER
devices

Challenges: robust, accurate,  
and efficient code-coupling  
algorithm; reduction in  
memory and I/O usage

Demystify Origin
of Chemical Elements
(Dan Kasen, LBNL)

• What is the origin of the  
elements?

• How does matter behave  
at extreme densities?

• What are the sources of  
gravity waves?

Challenges: delivering  
performance on accelerators;  
delivering fidelity for general  
relativity implementation

WDMApp ExaStar ExaFEL

Light Source-Enabled  
Analysis of Protein and  
Molecular Structure and  
Design
(Amadeo Perazzo, SLAC)

• Process data
without beam
time loss

• Determine
nanoparticle
size and shape changes

• Engineer functional  
properties in biology and  
materials science

Challenges: improving the  
strong scaling (one event  
processed over many cores)  
of compute-intensive  
algorithms (ray tracing, M-
TIP) on accelerators

Exascale apps can deliver transformative products and solutions

CANDLE

Accelerate and Translate  
Cancer Research
(Rick Stevens,ANL)

• Develop predictive  
preclinical models and  
accelerate diagnostic and  
targeted therapy through  
predicting mechanisms of  
RAS/RAF driven cancers

Challenges: increasing  
accelerator utilization for  
model search; effectively  
exploiting HP16; preparing  
for any data management or  
communication bottlenecks
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