Parallel Programming
Methodologies

“

John Urbanic

Parallel Computing Scientist
Pittsburgh Supercomputing Center

Why this talk?

This is a version of a presentation | give at
the beginning.ef.tha

track.

This version
contains blunt editorializing.
An to

hel 2 techniques
they have learned best apply to their own
applications.

FLOPS we need: Climate change analysis

Simulations

Extreme data

+ Cloud resolution, quantifying uncertainty,
understanding tipping points, etc., will
drive climate to exascale platforms

* New math, models, and systems support
will be needed

“‘Reanalysis” projects need 100x more computing
to analyze observations

Machine learning and other analytics
are needed today for petabyte data sets

Combined simulation/observation will empower
policy makers and scientists

Courtesy Horst Simon, LBNL

ECP application domains.

National security

Stockpile
stewardship

Next generation
simulation tools for
assessing nuclear
weapons performance

Response to hostile
threat environments
and reentry conditions

Energy security

Turbine wind plant
efficiency

High-efficiency,
low-emission
combustion engine
and gas turbine
design

Materials design for
extreme environments
of nuclear fission and
fusion reactors

Design and
commercialization of
Small Modular
Reactors

Subsurface use for
carbon capture,
petroleum extraction,
waste disposal

Scale-up of clean
fossil fuel combustion

Biofuel catalyst design

Economic security | Scientific discovery

Additive
manufacturing of
qualifiable metal parts

Reliable and efficient
planning of the power
grid

Seismic hazard risk
assessment

Find, predict, and
control materials and
properties

Cosmological probe of
the standard model of
particle physics

Validate fundamental
laws of nature

Demystify origin of
chemical elements

Light source-enabled
analysis of protein
and molecular
structure and design

Whole-device model
of magnetically
confined fusion
plasmas

Earth system Health care

Accelerate
and translate
cancer research

Accurate regional
impact assessments
in Earth system
models

Stress-resistant crop
analysis and catalytic
conversion of
biomass-derived
alcohols

Metagenomics for
analysis of
biogeochemical
cycles, climate
change,
environmental
remediation

Moore's Law abandoned serial programming around 2004

7 Years Behind

Advent of Multicore

- CPU92

- CPU95
CPU2000
CPU2006

- CPU2017

)
<
Q
n
a0
=
)
Q
=
<
S
—
S
=~
O
ol
-
Z.
e
-
Q
g
ol
P

j
1994 1996 1998 2000 2002 2004 2()06 2008 201() 2012 2014 2016 2018

Courtesy Liberty Computer Architecture Research Group

Come back tomorrow....

Transistors
(thousands)

Single-Thread
Performance 5
(SpecINT x 107)

Frequency (MHz

Typical Power
41 (Watts)

TR Y
WRF T, 2

. '" "§ Number of

- ¢ "3 *e Logical Cores

A
- v LR 22 28
‘ % GO 6 N0 SINNE HIINOWND & &

| | | |
1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

Pentium IlI
Pentium IV
Core
Nehalem
Sandybridge
Haswell
KNC
KNL

Skylake

Single Socket Parallelism: On your desktop

SSE

SSE2

SSES

SSE4

AVX

AVX2

AVX512

AVX512

AVX512

MPPs (Massively Parallel Processors)

Distributed memory at largest scale. Shared memory at lower level.

Summit (ORNL)
Sunway TaihuLight (NSC, China)

93 PFlops Rmax and 125 PFlops Rpeak

122 PFlops Rmax and 187 PFlops Rpeak

IBM Power 9, 22 core, 3GHz CPUs

Sunway SW26010 260 core, 1.45GHz CPU

2,282,544 cores

10,649,600 cores
NVIDIA Volta GPUs

Sunway interconnect
EDR Infiniband

Many Levels and Types of Parallelism

Vector (SIMD)
Instruction Level (ILP)
— Instruction pipelining
— Superscaler (multiple instruction units)
— Out-of-order
— Register renaming
— Speculative execution
— Branch prediction

Multi-Core (Threads)
SMP/Multi-socket

O
©
D
-]
<
U
o o

OpenACC { e Accelerators: GPU & MIC
e Clusters
MPI e MPPs

___ Compiler

(not your problem)

OpenMP 4/5
can help!

Also Important
ASIC/FPGA/DSP
RAID/IO

Parallel Computing

One woman can make a baby in 9 months.
Can 9 women make a baby in 1 month?

But 9 women can make 9 babies in 9 months.

First two bullets are Brook’s Law. From The Mythical Man-Month.

Need to write some scalable code?

First Choice:

Pick a language - or maybe a library, or paradigm
(whatever that 1s)?

Languages: Pick ONne g i+

Parallel Programming environments since the 90’s

Alternative Approach

“When all you have 1s a hammer,
everything looks like a nail.”

Prototypical Application:
Serial Weather Model

First parallel Weather Modeling algorithm:
Richardson in 1917

Courtesy John Burkhardt, Virginia Tech

Weather Model.: Shared Memory
(OpenMP)

i - - - -
P Ladiiias Olilpipala = LOL

Four meteorologists in tl e ()) b

Weather Model: Accelerator
(OpenACC)

1 meteorologists coordinating 1000 math savants using tin cans and a string.

Weather Model: Distributed Memory
(MPI)

call VP Send(numnosriossnd, ‘I, VMPI INTEGER, incleig, 10, VPl CONN WORLD), errcocls)

call VIRl Recv(nurmosrioracsive, |, WP INTEGER, 0, 10, VIRl COVYIVI WORLD), sizius, errcocls)

czll WIPI Barrier (VP COVINY WORLD), srreocle)

50 meteorologists using a telegraph.

MPI| as an answer to an emerging problem ?!

We are at a historic crossover where the cost of even
on-chip data movement is surpassing the cost of
computation.

MPI codes explicitly acknowledge and manage data
locality and movement (communication).

Both this paradigm, and quite possible outright MPI,
offer the only immediate solution. You and your
programs may find a comfortable future in the world of
massive multi-core.

This is a somewhat recent realization in the most avant-
garde HPC circles. Amaze your friends with your
insightful observations!

OpenACC

The pieces fit like this...
BN [E3EE (==
EE EE EE
= e =

=
L L L
MPI Op‘I‘MP
g |

10

RIKEN Center for Computational
Science
Japan

DOE/SC/ORNL
United States

DOE/NNSA/LLNL
United States

National Super Computer Center
in Wuxi
China

National Super Computer Center
in Guangzhou
China

EniS.p.A
Italy

EniS.p.A
Italy

Texas Advanced Computing
Center/Univ. of Texas
United States

Cineca
Italy

Swiss National Supercomputing
Centre (CSCS)

Cwitzarland

Fujitsu

IBM

IBM

NRCPC

NUDT

Dell

NVIDIA

Dell

IBM

Cray

Top 10 Systems as of June 2020

Fugaku

Summit

Sierra

Sunway TaihuLight

Tianhe-2

(MilkyWay-2)

HPc5

Selene

Frontera

Marconil00

Piz Daint
Cray XC50

ARM 8.2A+48C 2.2GHz
Torus Fusion Interconnect

Power9 22C3.0 GHz
Dual-rail Infiniband EDR
NVIDIA V100

Power9 3.1 GHz 22C
Infiniband EDR
NVIDIA V100

Sunway SW26010 260C
1.45GHz

Intel Xeon E5-2692 2.2 GHz
TH Express-2
Intel Xeon Phi 31S1P

Xeon 24C 2.1 GHz
Infiniband HDR
NVIDIA V100

EPYC 64C 2.25GHz
Infiniband HDR
NVIDIA A100

Intel Xeon 8280 28C 2.7 GHz
InfiniBand HDR

Power9 16C 3.0 GHz
Infiniband EDR
NVIDIA V100

Xeon E5-26902.6 GHz
Aries
NVIDIA P100O

7,299,072

2,414,592

1,572,480

10,649,600

4,981,760

669,760

272,800

448,448

347,776

387,872

415,530

148,600

94,640

93,014

61,444

35,450

27,580

23,516

21,640

21,230

513,854

200,794

125,712

125,435

100,678

51,720

34,568

38,745

29,354

27,154

28.3

10.1

7.4

15.3

18.4

2.2

13

1.5

2.4

Other Paradigms?

v/'* Message Passing
— MPI

\/ e Threads

— OpenMP, OpenACC, CUDA
v/ e Hybrid
— MPI + OpenMP
e Data Parallel
— Fortran90
e PGAS (Partitioned Global Address Space)
— UPC, Coarray Fortran (Fortran 2008)
e Frameworks
— Charm++

Dzital Parallel — F

Comoutziior in FORTRAN 90

Niu|u|d
Qiwiv| T
Kiw|v| T
Kiw|v| T

P = Processor

oriraro0

Real Afd,4), Bd, 4y, C(d,.4)

A=2.0

FORALL (I=1:4, J=1:4)
B(I, J)=I+J

C=At+H

c= A + B
4 |5 |6 |7 2|22 |2 2|34 |5
5|6|7|8 2|2 |2 |2 3|4|5|6
6|7|8|9 2|2 |2 |2 4 |5 |16 |7
7|89 110 (2|2 |2 |2 5|6 |7|8

[DallelRPalell el

COMMUNICAtGNT NN EORIIRANNS0

2}
(2}

Real Acd.4). B¢d,4)

FORALL (I=1:4. J=1:4)
B(I. T)=T+T
A—CSHIFT (B. DIM=2,1)

P
P
P
P

Qioigw
Kioiow
IRl

P = FProcessor

a= CSHIFT (BE.2.1)
3|4|5|6 213|425
4 |5 |6 |7 3|4|5|6
S5|6|7 |8 4 |5 |6 |7
2|34 |5 5|6 |7 |8

Data Parallel

Pros
e So simpleyou just learned some of it

e ...or already knew it from using Fortran
e Easyto debug

Cons

e [f your code doesn’t totally, completely express itself as nice array operations, you are
left without a flexible alternative.

— Image processing: Great
— Irregular meshes: Not so great

Domain Decomposition Done Well:
Load Balanced

e A parallel algorithm can only be as fast as the slowest chunk.
— Might be dynamic (hurricane moving up coast)
e Communication will take time

— Usually orders of magnitude difference between registers,
cache, memory, network/remote memory, disk

— Data locality and “neighborly-ness” matters very much.

Is Texas vs. New Jersey a good idea?

PGAS with Co-Array Fortran
(now Fortran 2008)

Co-array synchronization is at the heart of the typical Co-Array Fortran program.
Here is how to exchange an array with your north and south neighbors:

COMMON/XCTILB4/ B(N,4) [*]
SAVE /XCTILR4/

CALL SYNC ALL(WAIT=(/IMG S, IMG N/))
B(:,3) = B(:,1)[IMG S]
B(:,4) = B(:,2)[IMG N]J
CALL SYNC ALL(WAIT=(/IMG S,IMG N/))

Lots more examples at co-array.org.

Partitioned Global Address Space: (PGAS)

Multiple threads share at least a part of a Pros:
global address space. 1. Looks like SMP on a distributed
memory machine.
Can access local and remote data with 5 Currently translates code into
same mechanisms. an underlying message passing
version for efficiency.
Can distinguish between local and Cons:
remote data with some sort of typing. N Depends on (2) to be efficient.
_ 2. Can easily write lots of
Variants: expensive remote memory
Co-Array Fortran (CAF) access without paying attention.
Fortran 2008 c) Currently immature.
Unified Parallel C (UPC)

Frameworks

One of the more experimental approaches that was gaining some traction
was to use a parallel framework that handle the load balancing and
messaging while you “fill in” the science. Charm++ is the most popular
example:

Charm++ CHARM--++ : A high level view

— Object-oriented parallel extension
to C++ Sequential objects

— Run-time engine allows work to be
“scheduled” on the computer.

— Highly-dynamic, extreme load-
balancing capabilities.

Chares
(concurrent objects)

Branched chares

— Completely asynchronous. 'f (a form of replicated objects)
— NAMD, a very popular MD

simulation engine is written in | _Shared objects

Charm++

Communication objects

Frameworks

« After a long time with no positive reports in this space, | can definitely say that the
Machine Learning (Artificial Intelligence) community has embraced this in an
effective manner.

« The most popular frameworks/toolkits/packages used for deep learning (aka
Neural Nets) are very much in this philosophy.

« Caffe, TensorFlow and others use a high level descriptive approach to arrange
other components, often themselves a higher level layer in Python or whatnot, to
invoke libraries written in C++ (and actually Fortran is hidden in there more often
than those groups would believe in the form of BLAS type libraries).

« These frameworks use threads, GPUs and distributed nodes very heauvily.

* You could say that the math library nature of this work makes this unique, but the
Innovation in arranging these codeflows is not at all rote.

Some Alternatives

OpenCL (Khronos Group)

— Everyone supports, but not as a primary focus

— Intel - OpenMP

— NVIDIA — CUDA, OpenACC

— AMD - now HIP

— Khronos has now brought out SYCL
Fortran 2008+ threads (sophisticated but not consistently implemented)
C++11 threads are basic (no loops) but better than POSIX

— C++17 brings parallel STL

— C++20 atomic smart pointers, futures, latches and barriers, coroutines, transactional memory, task
blocks

Python threads are fake (due to Global Interpreter Lock) but multiprocessing is pretty easy.
DirectCompute (Microsoft) is not HPC oriented

C++ AMP (MS/AMD)

TBB (Intel C++ template library)

Cilk (Intel, now in a gcc branch)

Intel oneAPI (Includes DPC++ and extends SYCL)

Kokkos

How parallel is a code?

e Parallel performance is defined in terms of scalability

Strong Scalability
Can we get faster for a
given problem size?

Weak Scalability

Can we maintain
runtime as we scale up
the problem?

Amdahl’s Law

If there is x% of serial component, speedup
cannot be better than 100/x.

If you decompose a problem

into many parts, then the parallel
time cannot be less than the
largest of the parts.

o
=1
=
I
I
[=%
2]
)
<
=
<
o

If the critical path through a

computation is T, you cannot

complete in less time than T,

no matter how many processors you use .

Fraction of
Serial Code

0.01
0.05

0.1

Processors

Amdahl's law used to be cited by the knowledgeable as a limitation.
These days it is mostly raised by the uninformed.

Massive scaling is commonplace:
— Science Literature
— Web (map reduce everywhere)
— Data Centers (Spark, etc.)
— Machine Learning (GPUs and others)

Weak vs. Strong scaling

Weak Scaling

More accurate results

Strong Scaling

sults

Faster re

=
>
©
=
c
o
o
o
@®
c
S
T
N—r

End of Moore’s Law Will Lead to New Architectures

Non-von
Neumann

ARCHITECTURE

von Neumann

[.(\

Beyond CMOS

TECHNOLOGY

The Future and where you fit.

While the need is great, there is only a short list of serious contenders for 2020 exascale computing usability.

I\/I P I 3 . O +X (MP1 3.0 specifically addresses exascale computing issues)

PGAS (partitioned global address space)

CAE (now in Fortran 2008H . UPC

What about Big Data?

Deep Learning?

A Different Talk!
Perhaps next year?

I

MPI

I

Hybrid computing
IS Important!

