
Parallel Programming
Methodologies

John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Why this talk?

This is a version of a presentation I give at
the beginning of the International HPC
Summer School to help attendees select a
track.

And I give at the end of my Summer Boot Camp to
help students wisely choose which of the techniques
they have learned best apply to their own
applications.

Warning

This version

contains blunt editorializing.

FLOPS we need: Climate change analysis

Simulations Extreme data

• Cloud resolution, quantifying uncertainty,
understanding tipping points, etc., will
drive climate to exascale platforms

• New math, models, and systems support
will be needed

• “Reanalysis” projects need 100 more computing
to analyze observations

• Machine learning and other analytics
are needed today for petabyte data sets

• Combined simulation/observation will empower
policy makers and scientists

Courtesy Horst Simon, LBNL

ECP application domains.

Moore's Law abandoned serial programming around 2004

Courtesy Liberty Computer Architecture Research Group

Come back tomorrow....

Processor Year Vector Bits SP FLOPs / core /

cycle
Cores FLOPs/cycle

Pentium III 1999 SSE 128 3 1 3

Pentium IV 2001 SSE2 128 4 1 4

Core 2006 SSE3 128 8 2 16

Nehalem 2008 SSE4 128 8 10 80

Sandybridge 2011 AVX 256 16 12 192

Haswell 2013 AVX2 256 32 18 576

KNC 2012 AVX512 512 32 64 2048

KNL 2016 AVX512 512 64 72 4608

Skylake 2017 AVX512 512 96 28 2688

Single Socket Parallelism: On your desktop

MPPs (Massively Parallel Processors)
Distributed memory at largest scale. Shared memory at lower level.

Sunway TaihuLight (NSC, China)

– 93 PFlops Rmax and 125 PFlops Rpeak

– Sunway SW26010 260 core, 1.45GHz CPU

– 10,649,600 cores

– Sunway interconnect

Summit (ORNL)

– 122 PFlops Rmax and 187 PFlops Rpeak

– IBM Power 9, 22 core, 3GHz CPUs

– 2,282,544 cores

– NVIDIA Volta GPUs

– EDR Infiniband

Many Levels and Types of Parallelism

⚫ Vector (SIMD)

⚫ Instruction Level (ILP)

– Instruction pipelining

– Superscaler (multiple instruction units)

– Out-of-order

– Register renaming

– Speculative execution

– Branch prediction

⚫ Multi-Core (Threads)

⚫ SMP/Multi-socket

⚫ Accelerators: GPU & MIC

⚫ Clusters

⚫ MPPs

Compiler
(not your problem)

OpenMP

OpenACC

MPI

Also Important

• ASIC/FPGA/DSP

• RAID/IO

OpenMP 4/5
can help!

Parallel Computing

One woman can make a baby in 9 months.

Can 9 women make a baby in 1 month?

But 9 women can make 9 babies in 9 months.

First two bullets are Brook’s Law. From The Mythical Man-Month.

Need to write some scalable code?

First Choice:

Pick a language - or maybe a library, or paradigm
(whatever that is)?

Languages: Pick One (Hint: MPI + ?)

Parallel Programming environments since the 90’s

ABCPL

ACE

ACT++

Active messages

Adl

Adsmith

ADDAP

AFAPI

ALWAN

AM

AMDC

AppLeS

Amoeba

ARTS

Athapascan-0b

Aurora

Automap

bb_threads

Blaze

BSP

BlockComm

C*.

"C* in C

C**

CarlOS

Cashmere

C4

CC++

Chu

Charlotte

Charm

Charm++

Cid

Cilk

CM-Fortran

Converse

Code

COOL

CORRELATE

CPS

CRL

CSP

Cthreads

CUMULVS

DAGGER

DAPPLE

Data Parallel C

DC++

DCE++

DDD

DICE.

DIPC

DOLIB

DOME

DOSMOS.

DRL

DSM-Threads

Ease .

ECO

Eiffel

Eilean

Emerald

EPL

Excalibur

Express

Falcon

Filaments

FM

FLASH

The FORCE

Fork

Fortran-M

FX

GA

GAMMA

Glenda

GLU

GUARD

HAsL.

Haskell

HPC++

JAVAR.

HORUS

HPC

IMPACT

ISIS.

JAVAR

JADE

Java RMI

javaPG

JavaSpace

JIDL

Joyce

Khoros

Karma

KOAN/Fortran-S

LAM

Lilac

Linda

JADA

WWWinda

ISETL-Linda

ParLin

Eilean

P4-Linda

Glenda

POSYBL

Objective-Linda

LiPS

Locust

Lparx

Lucid

Maisie

Manifold

Mentat

Legion

Meta Chaos

Midway

Millipede

CparPar

Mirage

MpC

MOSIX

Modula-P

Modula-2*

Multipol

MPI

MPC++

Munin

Nano-Threads

NESL

NetClasses++

Nexus

Nimrod

NOW

Objective Linda

Occam

Omega

OpenMP

Orca

OOF90

P++

P3L

p4-Linda

Pablo

PADE

PADRE

Panda

Papers

AFAPI.

Para++

Paradigm

Parafrase2

Paralation

Parallel-C++

Parallaxis

ParC

ParLib++

ParLin

Parmacs

Parti

pC

pC++

PCN

PCP:

PH

PEACE

PCU

PET

PETSc

PENNY

Phosphorus

POET.

Polaris

POOMA

POOL-T

PRESTO

P-RIO

Prospero

Proteus

QPC++

PVM

PSI

PSDM

Quake

Quark

Quick Threads

Sage++

SCANDAL

SAM

pC++

SCHEDULE

SciTL

POET

SDDA.

SHMEM

SIMPLE

Sina

SISAL.

distributed smalltalk

SMI.

SONiC

Split-C.

SR

Sthreads

Strand.

SUIF.

Synergy

Telegrphos

SuperPascal

TCGMSG.

Threads.h++.

TreadMarks

TRAPPER

uC++

UNITY

UC

V

ViC*

Visifold V-NUS

VPE

Win32 threads

WinPar

WWWinda

XENOOPS

XPC

Zounds

ZPL

Alternative Approach

“When all you have is a hammer,

everything looks like a nail.”

Prototypical Application:

Serial Weather Model

MEMORY

CPU

Courtesy John Burkhardt, Virginia Tech

First parallel Weather Modeling algorithm:

Richardson in 1917

Weather Model: Shared Memory

(OpenMP)

MEMORY

Core

Core

Core

Core

Four meteorologists in the same room sharing the map.

Fortran:

!$omp parallel do

do i = 1, n

a(i) = b(i) + c(i)

enddo

C/C++:

#pragma omp parallel for

for(i=1; i<=n; i++)

a[i] = b[i] + c[i];

Weather Model: Accelerator
(OpenACC)

PCI Bus

CPU Memory GPU Memory

CPU GPU

1 meteorologists coordinating 1000 math savants using tin cans and a string.

#pragma acc kernels

for (i=0; i<N; i++) {

double t = (double)((i+0.05)/N);

pi += 4.0/(1.0+t*t);

}

__global__ void saxpy_kernel(float a, float* x, float* y, int n){

int i;

i = blockIdx.x*blockDim.x + threadIdx.x;

if(i <= n) x[i] = a*x[i] + y[i];

}

Weather Model: Distributed Memory

(MPI)

MEMORY

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory
CPU

&
Memory

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory
CPU

&
Memory

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory

CPU
&

Memory

50 meteorologists using a telegraph.

call MPI_Send(numbertosend, 1, MPI_INTEGER, index, 10, MPI_COMM_WORLD, errcode)

.

.

call MPI_Recv(numbertoreceive, 1, MPI_INTEGER, 0, 10, MPI_COMM_WORLD, status, errcode)

.

.

.

call MPI_Barrier(MPI_COMM_WORLD, errcode)

.

MPI as an answer to an emerging problem ?!

We are at a historic crossover where the cost of even
on-chip data movement is surpassing the cost of
computation.

MPI codes explicitly acknowledge and manage data
locality and movement (communication).

Both this paradigm, and quite possible outright MPI,
offer the only immediate solution. You and your
programs may find a comfortable future in the world of
massive multi-core.

This is a somewhat recent realization in the most avant-
garde HPC circles. Amaze your friends with your
insightful observations!

1	

10	

100	

1000	

10000	

DP
	FL
OP
	

Re
gis
te
r	

1m
m	
on
-ch
ip	

5m
m	
on
-ch
ip	

Of
f-c
hip

/D
RA
M
	

loc
al	
int
er
co
nn
ec
t	

Cr
os
s	s
ys
te
m	

Pi
co
Jo
ul
es
	

now	

2018	

The pieces fit like this…

OpenMP

OpenACC

MPI

Top 10 Systems as of June 2020
Site Manufacturer Computer CPU

Interconnect
[Accelerator]

Cores Rmax
(Tflops)

Rpeak
(Tflops)

Power
(MW)

1
RIKEN Center for Computational
Science
Japan

Fujitsu
Fugaku ARM 8.2A+ 48C 2.2GHz

Torus Fusion Interconnect
7,299,072 415,530 513,854 28.3

2
DOE/SC/ORNL
United States

IBM
Summit Power9 22C 3.0 GHz

Dual-rail Infiniband EDR
NVIDIA V100

2,414,592 148,600 200,794 10.1

3
DOE/NNSA/LLNL
United States

IBM
Sierra Power9 3.1 GHz 22C

Infiniband EDR
NVIDIA V100

1,572,480 94,640 125,712 7.4

4
National Super Computer Center
in Wuxi
China

NRCPC
Sunway TaihuLight Sunway SW26010 260C

1.45GHz
10,649,600 93,014 125,435 15.3

5

National Super Computer Center
in Guangzhou
China

NUDT

Tianhe-2
(MilkyWay-2)

Intel Xeon E5-2692 2.2 GHz
TH Express-2
Intel Xeon Phi 31S1P

4,981,760 61,444 100,678 18.4

6
Eni S.p.A
Italy Dell

HPc5 Xeon 24C 2.1 GHz
Infiniband HDR
NVIDIA V100

669,760 35,450 51,720 2.2

7
Eni S.p.A
Italy NVIDIA

Selene EPYC 64C 2.25GHz
Infiniband HDR
NVIDIA A100

272,800 27,580 34,568 1.3

8
Texas Advanced Computing
Center/Univ. of Texas
United States

Dell
Frontera Intel Xeon 8280 28C 2.7 GHz

InfiniBand HDR
448,448 23,516 38,745

9
Cineca
Italy

IBM
Marconi100 Power9 16C 3.0 GHz

Infiniband EDR
NVIDIA V100

347,776 21,640 29,354 1.5

10
Swiss National Supercomputing
Centre (CSCS)
Switzerland

Cray
Piz Daint
Cray XC50

Xeon E5-2690 2.6 GHz
Aries
NVIDIA P100

387,872 21,230 27,154 2.4

Other Paradigms?

⚫ Message Passing

– MPI

⚫ Threads

– OpenMP, OpenACC, CUDA

⚫ Hybrid

– MPI + OpenMP

⚫ Data Parallel

– Fortran90

⚫ PGAS (Partitioned Global Address Space)

– UPC, Coarray Fortran (Fortran 2008)

⚫ Frameworks

– Charm++

✓

✓

✓

Data Parallel – Fortran90

Computation in FORTRAN 90

Data Parallel

Communication in FORTRAN 90

Data Parallel
Pros

⚫ So simple you just learned some of it

⚫ …or already knew it from using Fortran

⚫ Easy to debug

Cons

⚫ If your code doesn’t totally, completely express itself as nice array operations, you are
left without a flexible alternative.

– Image processing: Great

– Irregular meshes: Not so great

Domain Decomposition Done Well:
Load Balanced

⚫ A parallel algorithm can only be as fast as the slowest chunk.

– Might be dynamic (hurricane moving up coast)

⚫ Communication will take time

– Usually orders of magnitude difference between registers,
cache, memory, network/remote memory, disk

– Data locality and “neighborly-ness” matters very much.

Is Texas vs. New Jersey a good idea?

PGAS with Co-Array Fortran
(now Fortran 2008)

Co-array synchronization is at the heart of the typical Co-Array Fortran program.
Here is how to exchange an array with your north and south neighbors:

COMMON/XCTILB4/ B(N,4)[*]

SAVE /XCTILB4/

CALL SYNC_ALL(WAIT=(/IMG_S,IMG_N/))

B(:,3) = B(:,1)[IMG_S]

B(:,4) = B(:,2)[IMG_N]

CALL SYNC_ALL(WAIT=(/IMG_S,IMG_N/))

Lots more examples at co-array.org.

Partitioned Global Address Space: (PGAS)

Multiple threads share at least a part of a
global address space.

Can access local and remote data with
same mechanisms.

Can distinguish between local and
remote data with some sort of typing.

Variants:

Co-Array Fortran (CAF)

Fortran 2008

Unified Parallel C (UPC)

Pros:

1. Looks like SMP on a distributed
memory machine.

2. Currently translates code into
an underlying message passing
version for efficiency.

Cons:

1. Depends on (2) to be efficient.

2. Can easily write lots of
expensive remote memory
access without paying attention.

3. Currently immature.

Frameworks

Charm++

– Object-oriented parallel extension
to C++

– Run-time engine allows work to be
“scheduled” on the computer.

– Highly-dynamic, extreme load-
balancing capabilities.

– Completely asynchronous.

– NAMD, a very popular MD
simulation engine is written in
Charm++

One of the more experimental approaches that was gaining some traction

was to use a parallel framework that handle the load balancing and

messaging while you “fill in” the science. Charm++ is the most popular

example:

Frameworks (Newsflash!)

• After a long time with no positive reports in this space, I can definitely say that the

Machine Learning (Artificial Intelligence) community has embraced this in an

effective manner.

• The most popular frameworks/toolkits/packages used for deep learning (aka

Neural Nets) are very much in this philosophy.

• Caffe, TensorFlow and others use a high level descriptive approach to arrange

other components, often themselves a higher level layer in Python or whatnot, to

invoke libraries written in C++ (and actually Fortran is hidden in there more often

than those groups would believe in the form of BLAS type libraries).

• These frameworks use threads, GPUs and distributed nodes very heavily.

• You could say that the math library nature of this work makes this unique, but the

innovation in arranging these codeflows is not at all rote.

Some Alternatives
⚫ OpenCL (Khronos Group)

– Everyone supports, but not as a primary focus

– Intel – OpenMP

– NVIDIA – CUDA, OpenACC

– AMD – now HIP

– Khronos has now brought out SYCL

⚫ Fortran 2008+ threads (sophisticated but not consistently implemented)

⚫ C++11 threads are basic (no loops) but better than POSIX

– C++17 brings parallel STL

– C++20 atomic smart pointers, futures, latches and barriers, coroutines, transactional memory, task
blocks

⚫ Python threads are fake (due to Global Interpreter Lock) but multiprocessing is pretty easy.

⚫ DirectCompute (Microsoft) is not HPC oriented

⚫ C++ AMP (MS/AMD)

⚫ TBB (Intel C++ template library)

⚫ Cilk (Intel, now in a gcc branch)

⚫ Intel oneAPI (Includes DPC++ and extends SYCL)

⚫ Kokkos

How parallel is a code?

⚫ Parallel performance is defined in terms of scalability

Strong Scalability

Can we get faster for a

given problem size?

Weak Scalability

Can we maintain

runtime as we scale up

the problem?

Amdahl’s Law
⚫ If there is x% of serial component, speedup

cannot be better than 100/x.

⚫ If you decompose a problem
into many parts, then the parallel
time cannot be less than the
largest of the parts.

⚫ If the critical path through a
computation is T, you cannot
complete in less time than T,
no matter how many processors you use .

⚫ Amdahl's law used to be cited by the knowledgeable as a limitation.

⚫ These days it is mostly raised by the uninformed.

⚫ Massive scaling is commonplace:
– Science Literature

– Web (map reduce everywhere)

– Data Centers (Spark, etc.)

– Machine Learning (GPUs and others)

Weak vs. Strong scaling

More

Processors

More

Processors

Weak Scaling

Strong Scaling

More accurate results

Faster results

(Tornado on way!)

End of Moore’s Law Will Lead to New Architectures

TODAY

NEUROMORPHIC
QUANTUM

COMPUTING

BEYOND CMOS

Non-von

Neumann

von Neumann

Beyond CMOSCMOS

ARCHITECTURE

TECHNOLOGY

Courtesy Horst Simon, LBNL

MPI 3.0 +X (MPI 3.0 specifically addresses exascale computing issues)

PGAS (partitioned global address space)

CAF (now in Fortran 2008!),UPC

APGAS

X10, Chapel

Frameworks

Charm++

Functional

Haskell

The Future and where you fit.
While the need is great, there is only a short list of serious contenders for 2020 exascale computing usability.

What about Big Data?

Deep Learning?

A Different Talk!

Perhaps next year?

Again…

OpenMP

OpenACC

MPI

Hybrid computing

is important!

