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Abstract. This paper concentrates on a total variation diminishing
Hopmoc scheme for numerical time integration of evolutionary dif-
ferential equations. The Hopmoc method for numerical integration of
parabolic partial differential equations with convective dominance is
based on the concept of spatially decomposed meshes used in the Hop-
scotch method. In addition, the Hopmoc method uses the concept of
integration along characteristic lines in a Semi-Lagrangian scheme based
on the Modified Method of Characteristics. This work employs Total
Variation Diminishing schemes in order to increase accuracy of the Hop-
moc method. Thus, this paper shows that the Hopmoc method in con-
junction with a Total Variation Diminishing scheme provides effective
improvements over the original Hopmoc method.
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1 Introduction

The numerical solution of advection–diffusion transport arises from several rel-
evant scientific and engineering applications, including problems in physics and
chemistry. Important examples of its use include the transport of contaminants
in air, ground water, rivers, and lagoons, oil reservoir flow, aerodynamics, astro-
physics, biomedical applications, in the modeling of semiconductors, geophysical
flows, such as meteorology and oceanography [1]. In reactive or environment fluid
flow problems, contaminant or chemical species are mainly transported by the
fluid in which it is dissolved. Specifically in computational hydraulics and fluid
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dynamics problems, the advection–diffusion equation can be used to represent
quantities such as mass, heat, energy, vorticity, etc. [2]. Thus, the modeling of
transport processes is studied in a wide range of fields. Therefore, this is a key
topic in numerical mathematics [3].

The Hopmoc method was proposed to solve parabolic problems with convec-
tive dominance in parallel architectures [4,5]. This method addresses the entire
process of parallelization by devising a spatial decoupling that allows message-
passing minimization.

The Hopscotch method [6–10] is a general-purpose approach for the solution
of second-order parabolic and elliptic partial differential equations. The Hop-
moc method [4,5] is based on Hopscotch concepts in the sense that the set of
unknowns is decoupled into two subsets. These subsets are calculated alternately
in explicit and implicit semi–steps so that the approach does not involve solv-
ing any linear system. The semi–steps are solved along characteristic lines in a
Semi-Lagrangian approach following concepts of the Modified Method of Char-
acteristics [11]. The time derivative and the advection term are integrated as
a direction derivative, i.e. time steps are calculated in the flow direction along
characteristics of the velocity field of the fluid. Specifically, the Hopmoc method
uses a strategy based on tracking values along characteristic lines during time
stepping. Furthermore, it is an Eulerian-Lagrangian localized adjoint method
(ELLAM [12]) since the domain is completely discretized along characteristic
lines. In short, an ELLAM-like method provides the accuracy and efficiency of
an Eulerian-Lagrangian approach, preserves mass quantity, and systematically
handles any sort of boundary condition [13]. In addition, the Hopmoc method
is a direct method in the sense that the cost per time step is known a priori [1].
Another advantage of the Hopmoc method is that its processing time is linear
in the number of unknowns per time step [14].

Discretization of the advective term in transport equations is frequently a
difficult task. To avoid abrupt numerical oscillations in the solution, Harten [15]
introduced the concepts of Total Variation Diminishing (TVD) techniques and
flux limiter. In short, these techniques provide monotonicity-preserving proper-
ties of stable higher-order accurate solutions of advection–diffusion problems.
Total Variation Diminishing techniques have been successfully employed along-
side numerical methods, where recent examples are the publications of Bartels
[16] and Fernandes et al. [17].

This paper implements a Total Variation Diminishing technique along with
the Hopmoc method. More specifically, this work shows how to combine a total
variation diminishing scheme for numerical time integration of parabolic equa-
tions with convective dominance when using the Hopmoc method.

The remainder of this paper is divided as follows. Section 2 provides a brief
background on the original Hopmoc scheme, which we modify and improve in
this paper. Section 3 describes the Total Variation Diminishing scheme employed
and the different flux limiters used in this work. Section 4 shows the numerical
results. Specifically, this section shows the efficiency of the new scheme over the
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original Hopmoc method in terms of numerical errors. Section 5 addresses the
final remarks and a description of future works.

2 The Hopmoc Method

For clarity, we describe below the Hopmoc method in details (see [4,5]). Consider
the one-dimensional advection–diffusion equation in the form

ut + vux = duxx, (1)

comprised of appropriate initial and boundary conditions, where v is a constant
positive velocity, d is a positive constant of diffusivity, and 0 ≤ x ≤ 1. Even
though in Eq. (1) ut refers to the time derivative and not u evaluated at a
discrete time step t, we abuse the notation and now use t to represent a discrete
time step in the range 0 ≤ t ≤ T , for T time steps. Then, Δt = ut+1 − ut

(δt = Δt
2 = ut+ 1

2 − ut) represents a time (semi-) step when considering a typical
finite-difference discretization for Eq. (1). Specifically, this work uses a three-
point finite-difference scheme for the discretization of diffusive terms.

Figure 1 represents the Hopmoc method for a one-dimensional problem. This
figure shows that the characteristic line allows to obtain u
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)
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in the previous two time semi–steps, for x
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. The Hopmoc method performs this strategy along characteristic lines

in a Semi-Lagrangian scheme based on the Modified Method of Characteristics
[11]. Thus, u
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[
ut+1

i

]
is a numerical approximation of u in (xi, u
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[(
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. In

addition, a uniform spatial discretization Δx = xi+1 − xi is used [18]. Thereby,

the Hopmoc method uses variable values u
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)
to calculate u
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in

its first (second) time semi–step.
The set of grid points is divided into two subsets during the implementation

of the integration step (see Fig. 1). Then, two distinct updates are alternately
performed, one explicit and one implicit, on each variable in the course of the
iterative process. Each update demands an integration semi step. Similar to the
Hopscotch method, this approach avoids the use of a linear system solver to
calculate the unknowns, as mentioned.

The Hopmoc method employs the finite-difference operator

Lh(ut
i) = d

ut
i−1 − 2ut

i + ut
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Δx2
(2)
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Fig. 1. Variable values u
t
i are used to calculate u

t+ 1
2

i in a first time semi–step and

subsequently the variable values u
t+ 1

2
i are used to calculate ut

i in the second time
semi–step in the Hopmoc method

θt
i = 1 (= 0) if t+ i is even (odd). In particular, Oliveira et al. [18] presented the

convergence analysis of the Hopmoc method for an advection–diffusion equation.
The discretization of the advective term demands to calculate the values of

the concentration at midpoints of the sides of each grid interval. Thus, this work
employs a flux limiter to obtain these values.

As mentioned, the Hopmoc method employs in each first step a linear inter-
polation to obtain the initial estimative of the function value in the foot of the
characteristic line. Consider a complete Hopmoc step in order to calculate ut+1

i

when t is even: u
t+ 1

2
i are updated using u

t
i in the first time semi–step, i.e., u

t
i

are obtained by a linear interpolation using values ut
i from the previous time

step, since these values are already known from the previous time step. When
using a linear interpolation, one obtains u

t
i = ut

i−q−1+ ut
i−q−ut

i−q−1
xi−q−xi−q−1

(xi −xi−q−1),
where q =

⌊
Δt
Δx

⌋
is the number of spatial intervals to be jumped to find

xi = xi − vΔt, so that (xi−q−1, xi−q) is the interpolation interval sought. Con-
sequently, xi ∈ (xi−q−1, xi−q). Therefore, the linear interpolation is

u
t
i =

(
xi−q − xi

)
ut

i−q−1 +
(
xi − xi−q−1

)
ut

i−q

xi−q − xi−q−1
. (3)
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Substituting Δx = xi−q −xi−q−1 and xi = xi −Δt for v = 1 in Eq. (3) yields

u
t
i =

(

−qΔx︷ ︸︸ ︷
xi−q − xi +Δt)ut

i−q−1 + (

(q+1)Δx︷ ︸︸ ︷
xi − xi−q−1 −Δt)ut

i−q

Δx
. (4)

Each nodal point in the spatial discretization is given by xi = i · Δx, for
i = 0, 1, · · · , N in N spatial intervals. Therefore, substituting −qΔx = xi−q −xi

and (q + 1)Δx = xi − xi−q−1 in Eq. (4) yields

u
t
i =

(
Δt

Δx
− q

)(
ut

i−q−1 − ut
i−q

)
+ ut

i−q. (5)

The origin of the error in Eq. (5) occurs as described below [18].

– Error increases if Δt < Δx. In this case, q = 0 is obtained and the interpola-
tion step contains a nodal point xi, i.e., xi ∈ (xi−1, xi). Rewriting Eq. (5)
provides u

t
i =

(
Δt
Δx

)
ut

i−1 +
(
1 − Δt

Δx

)
ut

i. When Δt decreases, the foot of
the characteristic line approximates xi. Thus, the factor 1 − Δt

Δx increases.
This means that if a higher weight is given to the value ut

i, the error grad-
ually increases. Nevertheless, ut

i−1 represents upstream information. Since
xi = xi − Δt, the foot of the characteristic line approximates xi when Δt
decreases. The expected result is to reduce the maximum error. However, if
Δt < Δx, then the error increases when Δt decreases because of the use of a
linear interpolation.

– Error oscillates if Δt ≥ Δx. The errors of the scheme present oscillations
with respect to Δt

Δx . If this quotient is an integer number, the error is smaller;
otherwise, it is either increased or reduced, and the analysis is divided into
the two cases described below.

1. Δt is multiple of Δx and Δt
Δx − q = 0 in Eq. (5). This means that the foot

of the characteristic line xi coincides with a nodal point. Thus, each u
t
i is

directly updated from the value ut
i−q, which in turn was updated after a

Hopmoc step in the second time semi–step t, i.e. u
t
i = ut

i−q. Therefore, the

values u
t+ 1

2
i and ut+1

i are updated without any error originated from a linear
interpolation. More precisely, a linear interpolation is not carried out if the
foot of the characteristic line is a nodal point. For this reason, the error is
considerably reduced if compared with simulations where a linear interpola-
tions occurs. This can be observed in Table 1, when considering Eq. (2). In
particular, this table shows inherent truncation errors in simulations with the
Hopmoc method even without using linear interpolation because the use of
large time steps (see rows with Δt

Δx ≥ 4 in Table 1).
2. Δt is not multiple of Δx. Considering Eq. (5), the interpolation of the values

u
t
i are calculated as u

t
i =
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Δt
Δx − q

)
ut

i−q−1 +
[
1 − (

Δt
Δx − q

)]
ut

i−q.
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Table 1. Maximum errors when setting Δx = 0.001 and applying the Hopmoc method
with and without (w/o) using linear interpolation (int.)

Δt Δt
Δx

d = 0.002 d = 0.001 d = 0.0006

int. w/o int. int. w/o int. int. w/o int.

2.00 · 10−4 0.2000 1.5138 0.0 3.1551 0.0 4.5060 0.0

2.50 · 10−4 0.2500 1.4929 0.0 2.9897 0.0 4.2807 0.0

31.25 · 10−5 0.3125 1.3215 0.0 2.7781 0.0 3.9905 0.0

4.00 · 10−4 0.4000 1.1678 0.0 2.4721 0.0 3.5678 0.0

5.00 · 10−4 0.5000 0.9876 0.0 2.1075 0.0 3.0590 0.0

6.25 · 10−4 0.6250 0.7549 0.0 1.6279 0.0 2.3807 0.0

8.00 · 10−4 0.8000 0.4141 0.0 0.9066 0.0 1.3410 0.0

1.00 · 10−3 1.0000 0.0012 0.0 0.0008 0.0 0.0001 0.0

1.25 · 10−3 1.2500 0.3154 0.0 0.6906 0.0 1.0236 0.0

156.25 · 10−5 1.5625 0.3375 0.0 0.7272 0.0 1.0742 0.0

1.00 · 10−3 4.0000 0.1695 0.0003 0.0803 0.0003 0.0457 0.0002

1.00 · 10−2 10.0000 1.0749 0.0021 0.5188 0.0019 0.3011 0.0015

3 A Total Variation Diminishing Scheme

Consider the advection part of Eq. (1), i.e.

ut + v · ux = 0, (6)

for the case when u is constant and positive. In addition, consider ut
i as a discrete

approximation to u in a grid point at time step t. Harten [15] explained that a
weak solution of a scalar initial value problem has a monotonicity property as
a function of t, i.e. no new local extrema in the solution spatial domain may
be created; and the value of a local minimum (maximum) is non-decreasing
(non-increasing).

Consider the total variation (TV) at time step t defined as TV t =∑
i |ut

i+1 − ut
i|. It follows from this monotonicity property that the total vari-

ation is non-increasing in t, i.e. a scheme is Total Variation Diminishing if it
guarantees that TV t+1 ≤ TV t.

The Total Variation Diminishing property should be evaluated globally in
a solution of an advection scheme. The Total Variation Diminishing property
guarantees that the total variation of the solution will not increase as the solution
evolves in time. Harten [15] demonstrated that an initially monotonic profile ut

i

remains monotonic after advection by a Total Variation Diminishing scheme.
Consider the Eq. (6) rewritten in the form

ut+1
i = ut

i − Ci− 1
2

(
ut

i − ut
i−1

)
+ Di+ 1

2

(
ut

i+1 − ut
i

)
, (7)
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where values represented in C and D may depend on unknowns ut
i as well as on

u. Harten [15] showed that the conditions

0 ≤ Ci+ 1
2
, 0 ≤ Di+ 1

2
, Ci+ 1

2
+ Di+ 1

2
≤ 1, (8)

for all i, are sufficient to ensure that the scheme is Total Variation Diminishing.
Thus, when building a Total Variation Diminishing scheme, one considers a
basic advection scheme, rewrites it in the form of Eq. (7), and then modifies it
in a manner that satisfies the conditions in (8). To exemplify this approach, we
consider a discretization in the form

ut+1
i = ut

i − c ·
(
ûi+ 1

2
− ûi− 1

2

)
, (9)

where c = v Δt
Δx is the Courant number and values represented in û are mixing

ratios at the grid box edges. To illustrate the definition of û, we use the Lax–
Wendroff scheme ûi+ 1

2
= ut

i + 1−c
2

(
ut

i+1 − ut
i

)
[19].

The Total Variation Diminishing scheme is built when a factor φ is intro-
duced, called flux limiter,

ûi+ 1
2

= ut
i + φi

1 − c

2
(
ut

i+1 − ut
i

)
. (10)

In general, φ depends on u and then it may change with respect to position
and time. Two particular cases are the Lax–Wendroff scheme (when φi = 1)
and the classical upwind scheme (when φi = 0) [20]. Thus, Eqs. (9) and (10)
can be combined as ui+1 = ut

i − c(ut
i − ut

i−1)
[
1 − 1−c

2 φi−1 + 1−c
2 · φi

r

]
, where

r = ut
i−ut

i−1
ut

i+1−ut
i
. Observing that c < 1 and to guarantee that this scheme is Total

Variation Diminishing, the conditions 0 ≤ φi ≤ 2
1−c and 0 ≤ φi

ri
≤ 2

c for all i
must be applied. To avoid the CFL condition, those conditions can be rewritten
as 0 ≤ φi ≤ 2 and 0 ≤ φi

ri
≤ 2, for all i. These conditions are satisfied by several

flux limiters [3,19,21], and the same approach can be used in conjunction with
any high-order basic advection scheme [19].

Flux limiters define the advection scheme based on a ratio of local gradi-
ents in the solution field [21,22]. To be used in conjunction with the Hopmoc
method, this work compares five flux–limiter formulations based on [23] because
the spatial terms are completely separated from the time discretization in their
formulations.

– MinMod is a symmetric piecewise-linear scheme proposed by Roe and Baines
[23]. It represents the simple expedient of centered gradients from extrema
[21]: φ(r) = max[0,min(r, 1)].

– Superbee is a symmetric piecewise-linear scheme proposed by Roe [24]:
φ(r) = max[0,min(2r,max(r, 1), 2)]. This scheme is a highly compressive
transfer function. It was developed to achieve the best possible resolution
in discontinuities.
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– Van Leer is a symmetric non-linear scheme proposed by Van Leer [25] defined
as φ(r) = max[0,min(θr, 1),min(θ, r)] with 1 ≤ θ ≤ 2, so that φ(r) = r+|r|

1+|r| . It
is based on consecutive gradients and is a particular-case TVD scheme that
includes extrema both in the upper and lower boundaries.

– Monotonized Central (MC) is a symmetric scheme proposed also by Van Leer
[25]. It compares the central difference slope of a centered slope method with
twice the one-sided slope to a side: φ(r) = max

[
0,min

(
2r, 1+r

2 , 2
)]

.
– Koren’s scheme [26] consists of a non-linear symmetric technique. A version

of this scheme applied to variable grid size was presented by Holstad [3]:
φ(r) = max

[
0,min

(
4r, 2

3r + 1
3 , 2

)]
.

The use of a TVD technique does not change the complexity of the 1–D
Hopmoc method. This occurs because, similar to the MMOC, the loop that
calculates a TVD technique takes O(n) time.

4 Numerical Results and Analysis

Consider the one-dimensional advection–diffusion Eq. (1) with velocity v = 1.0
and diffusion coefficient d = 2

Re . Thus, Eq. (1) is rewritten as

ut + ux =
2

Re
uxx. (11)

The analytical solution to (11) in a smooth domain is

U(x, t) =
exp

[
− (x−xo−t)2

2·φ(t)
]

√
φ

, (12)

where φ(t) = φo

[
1 + 4t

Reφo

]
, xo is the initial center location of the pulse,

Re = ρ·L·v
μ is the Reynolds number, ρ, L, v, and μ represent density, size of the

draining, velocity, and viscosity of the fluid, respectively, and φ0 is the Gaussian
pulse amplitude. A Gaussian pulse with amplitude 0.0004, whose initial cen-
ter location is 0.2, is simulated in our numerical experiments. The initial and
boundary conditions simulate the analytical value U(x, t) given by Eq. (12), for
0 ≤ x ≤ 1 and 0 ≤ t ≤ T .

The workstation used in the execution of the simulations contains an Intel R©

CoreTM i5 with 4 GB of main memory, OS X version 10.10.1 (Intel; Santa Clara,
CA, United States). The maximum error was defined as max |U(x, t) − ui

t|.
As described, Table 1 shows the results of the original Hopmoc method when

using interpolation. These results were compared with the results obtained when
using a Total Variation Diminishing scheme to determine the foot of the charac-
teristic line in the Hopmoc method. We will refer this approach as TVD–Hopmoc
method.

Table 2 shows the maximum errors when establishing Δx = 0.001 and
Reynolds number (Re) as 1000 and, consequently, d = 0.002. This table shows the
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Table 2. Maximum errors from the TVD-Hopmoc method when setting Δx = 0.001
and Reynolds number Re = 1000 compared with maximum errors in simulations using
the original Hopmoc method. The symbol † indicates that the convergence was not
achieved

Δt Δt
Δx

Hopmoc TVD–Hopmoc

w/o int. int. Van Leer MinMod Superbee MC Koren

2.00 · 10−4 0.20 0.0000 1.5138 0.0048 0.0310 0.0306 0.0048 0.0124

2.50 · 10−4 0.25 0.0000 1.4929 0.0038 0.0296 0.0284 0.0038 0.0109

31.25 · 10−5 0.31 0.0000 1.3215 0.0027 0.0274 0.0255 0.0026 0.0092

4.00 · 10−4 0.40 0.0000 1.1678 0.0023 0.0235 0.0215 0.0014 0.0071

5.00 · 10−4 0.50 0.0000 0.9876 0.0028 0.0213 0.0163 0.0019 0.0050

6.25 · 10−4 0.63 0.0000 0.7549 0.0031 0.0170 0.0104 0.0023 0.0031

8.00 · 10−4 0.80 0.0000 0.4141 0.0031 0.0089 0.0028 0.0028 0.0022

1.00 · 10−3 1.00 0.0000 0.0012 †
1.25 · 10−3 1.25 0.0000 0.3154

156.25 · 10−5 1.56 0.0000 0.3375

4.00 · 10−3 4.00 0.0003 0.1695

1.00 · 10−2 10.00 0.0021 1.0749

Fig. 2. Maximum errors when setting Δx = 0.001 and Reynolds number (Re) estab-
lished as 1000 in simulations employing the TVD–Hopmoc method alongside five flux–
limiter formulations

maximum errors of the original Hopmoc method with and without (w/o) using lin-
ear interpolation (int.). This table and Fig. 2 show that the Monotonized Central
scheme reached the best results when used along with the TVD–Hopmoc method.

Table 3 shows the results when setting the Reynolds number as 2000 (d =
0.001) and 3000. Tables 2 and 3 and Figs. 3 and 4 show that the TVD–Hopmoc
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method in conjunction with the Monotonized Central scheme [25] obtained in
general better results than employing the other four flux–limiter schemes. On the
other hand, Koren’s scheme [26] achieved better results than the other schemes
when employed in simulations with Δt

Δx = 0.8. Moreover, Tables 2 and 3 and
Fig. 5 show that the TVD-Hopmoc method (along with the Monotonized Central
scheme [25]) obtains better accuracy results than the Hopmoc method using an
interpolation technique.

Table 3. Maximum errors when setting Δx = 0.001 and Reynolds number (Re) estab-
lished as 2000 and 3000 in simulations employing the TVD–Hopmoc along with five
flux–limiter formulations and the Hopmoc method with and without (w/o) using a lin-
ear interpolation (int.). The symbol † indicates that the convergence was not achieved

Re Δt Δt
Δx Hopmoc TVD–Hopmoc

w/o int. int. V. Leer MinMod Superbee MC Koren

2000 2.00 · 10−4 0.20 0.0000 3.1551 0.0142 0.0902 0.0852 0.0139 0.0362

2.50 · 10−4 0.25 0.0000 2.9897 0.0111 0.0845 0.0800 0.0109 0.0318

31.25 · 10−5 0.31 0.0000 2.7781 0.0077 0.0775 0.0733 0.0075 0.0267

4.00 · 10−4 0.40 0.0000 2.4721 0.0058 0.0676 0.0639 0.0035 0.0203

5.00 · 10−4 0.50 0.0000 2.1075 0.0051 0.0566 0.0526 0.0015 0.0140

6.25 · 10−4 0.63 0.0000 1.6279 0.0040 0.0427 0.0389 0.0028 0.0078

8.00 · 10−4 0.80 0.0000 0.9066 0.0036 0.0223 0.0197 0.0037 0.0023

1.00 · 10−3 1.00 0.0000 0.0008 †
1.25 · 10−3 1.25 0.0000 0.6906

156.25 · 10−5 1.56 0.0000 0.7272

2.00 · 10−3 2.00 0.0000 0.0187

2.50 · 10−3 2.50 0.0001 0.4776

31.25 · 10−4 3.13 0.0001 0.1717

4.00 · 10−3 4.00 0.0003 0.0803

6.25 · 10−3 6.25 0.0007 0.2373

1.00 · 10−2 10.00 0.0019 1.2599

3000 2.00 · 10−4 0.2 0.0000 4.5060 0.0248 0.1584 0.1441 0.0239 0.0620

2.50 · 10−4 0.25 0.0000 4.2807 0.0195 0.1484 0.1350 0.0187 0.0545

31.25 · 10−5 0.31 0.0000 3.9905 0.0142 0.1360 0.1242 0.0129 0.0457

4.00 · 10−4 0.40 0.0000 3.5678 0.0123 0.1187 0.1086 0.0060 0.0347

5.00 · 10−4 0.50 0.0000 3.0590 0.0103 0.0987 0.0907 0.0030 0.0240

6.25 · 10−4 0.63 0.0000 2.3807 0.0073 0.0738 0.0685 0.0047 0.0133

8.00 · 10−4 0.80 0.0000 1.3410 0.0063 0.0386 0.0365 0.0061 0.0036

1.00 · 10−3 1.00 0.0000 0.0001 †
1.25 · 10−3 1.25 0.0000 1.0236

156.25 · 10−5 1.56 0.0000 1.0742

2.00 · 10−3 2.00 0.0000 0.0097

2.50 · 10−3 2.50 0.0001 0.7015

31.25 · 10−4 3.13 0.0001 0.2535

4.00 · 10−3 4.00 0.0002 0.0457

5.00 · 10−3 5.00 0.0003 0.0230

6.25 · 10−3 6.25 0.0005 0.2788

1.00 · 10−2 10.00 0.0015 0.3011
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Fig. 3. Maximum errors when setting Δx = 0.001 and Reynolds number (Re) estab-
lished as 2000 in simulations employing the TVD–Hopmoc method alongside five flux–
limiter formulations

Fig. 4. Maximum errors when setting Δx = 0.001 and Reynolds number (Re) estab-
lished as 3000 in simulations employing the TVD–Hopmoc method alongside five flux–
limiter formulations

The Hopmoc method is independent of the CFL condition. On the other
hand, the TVD–Hopmoc method does not converge for v · Δt

Δx ≥ 1 because it is
based on the Lax–Wendroff method that was used to obtain the Total Variation
Diminishing formulation.

When the foot of the characteristic line is a nodal point (i.e. a very par-
ticular case), Tables 2 and 3 show that the results obtained when applying the
original Hopmoc method without linear interpolation is better than using Total
Variation Diminishing schemes. However, for instance when the velocity field is
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Fig. 5. Maximum errors when setting Δx = 0.001 and Reynolds number (Re) estab-
lished as 3000 in simulations employing the Hopmoc and TVD–Hopmoc methods along-
side the Monotonized Central scheme [25]

non-uniform, this peculiar circumstance (i.e. the foot of the characteristic line
as a nodal point) does not occur.

5 Conclusions and Future Works

This work presented the Hopmoc method along with a Total Variation Dimin-
ishing scheme (TVD–Hopmoc for short) for the solution of parabolic equations
with convective dominance without solving linear systems. The TVD–Hopmoc
method computes previous values by tracking them along characteristic lines
and employs a flux–limiter formulation to provide higher precision solutions
than the original Hopmoc method. This work compared five flux–limiter formu-
lations along with the Hopmoc method. The Monotonized Central scheme [25]
yielded in general better results than the other four schemes in simulations with
three Reynolds number regimes. On the other hand, Koren’s scheme [26] deliv-
ered better results than the other schemes in simulations with Δt

Δx = 0.8 (see
Tables 2 and 3). Thus, this paper provided numerical experiments that show the
advantages of the new approach compared with the original Hopmoc method.
Specifically, the numerical results obtained with the new TVD–Hopmoc strategy
provided effective improvements over the original Hopmoc method for simula-
tions with Courant number smaller than 1 since the flux–limiter formulations
employed here are based on the Lax–Wendroff method.

Naturally, the Hopmoc method is more accurate when values from previous
time steps are obtained from nodal points when tracking them along the char-
acteristic line. However, this situation is a very particular case for a uniform
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velocity field so that more experiments are necessary to be carried out in the
case of non-uniform velocity fields.

Furthermore, the Total Variation Diminishing property does not guarantee
that one extrema grows whereas another nearby extrema diminishes [19]. Then,
other approaches using positive schemes and universal limiters will be evaluated
in future studies. In addition, we intend to evaluate those schemes when applying
them to 2–D and 3–D parallel cases so that the scalability of this approach will be
also evaluated in future investigations. Additionally, we plan to compare how well
the proposed new method performs compared with other approaches, especially
one based on an approach of solving systems of linear algebraic equations.
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17. Fernandes, B.R.B., Gonçalves, A.D.R., Filho, E.P.D., Lima, I.C.M., Marcondes,
F., Sepehrnoori, K.: A 3D total variation diminishing scheme for compositional
reservoir simulation using the element-based finite-volume method. Numer. Heat
Transfer, Part A 67(8), 839–856 (2015)

18. Oliveira, S.R.F., Gonzaga de Oliveira, S.L., Kischinhevsky, M.: Convergence anal-
ysis of the Hopmoc method. Int. J. Comput. Math. 86, 1375–1393 (2009)

19. Thuburn, J.: TVD schemes, positive schemes and universal limiter. Mon. Weather
Rev. 125, 1990–1993 (1997)

20. Courant, R., Isaacson, E., Rees, M.: On the solution of nonlinear hyperbolic dif-
ferential equations by finite differences. Commun. Pure Appl. Math. 5(3), 243–255
(1952)

21. Waterson, N.P., Deconinck, H.: Design principles for bounded higher-order convec-
tion schemes - a unified approach. J. Comput. Phys. 224, 182–207 (2007)

22. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation
laws. SIAM J. Numer. Anal. 21(5), 995–1011 (1984)

23. Roe, P.L., Baines, M.J.: Algorithms for advection and shock problems. In: Viviand,
H. (ed.): Proceedings of the Fourth GAMM Conference on Numerical Methods in
Fluid Mechanics. Notes on Numerical Fluid Mechanics, vol. 5, pp. 281–290. Vieweg,
Paris, France (1982)

24. Roe, P.L.: Some contributions to the modelling of discontinuous flows. In: Engquist,
B.E., Osher, S., Somerville, R.C.J. (eds.): Proceedings of the Fifteenth Summer
Seminar on Applied Mathematics Large-Scale Computations in Fluid Mechanics.
Lectures in Applied Mathematics, vol. 22, pp. 163–193. AMS-SIAM Summer Sem-
inar, American Mathematical Society, La Jolla, CA (1985)

25. van Leer, B.: Towards the ultimate conservative difference schemes. J. Comput.
Phys. 14, 361–370 (1974)

26. Koren, B.: A robust upwind discretization method for advection, diffusion and
source terms. In: Vreugdenhil, C.B., Koren, B. (eds.) Numerical Methods for
Advection - Diffusion Problems. Notes on Numerical Fluid Mechanics, vol. 45, pp.
117–138. Friedrich Vieweg & Sohn Verlagsgesellschaft, Braunschweig, Germany,
October 1993


	A Total Variation Diminishing Hopmoc Scheme for Numerical Time Integration of Evolutionary Differential Equations
	1 Introduction
	2 The Hopmoc Method
	3 A Total Variation Diminishing Scheme
	4 Numerical Results and Analysis
	5 Conclusions and Future Works
	References




