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Abstract—This paper focuses on the parallelization of TVD
Method scheme for numerical time integration of evolutionary
differential equations. The Hopmoc method for numerical
integration of differential equations was developed aiming at
benefiting from both the concept of integration along character-
istic lines as well as from the spatially decomposed Hopscotch
method. The set of grid points is initially decomposed into
two subsets during the implementation of the integration step.
Then, two updates are performed, one explicit and one implicit,
on each variable in the course of the iterative process. Each
update requires an integration semi step. This is carried
out along characteristic lines in a Semi-Lagrangian scheme
based on the Modified Method of Characteristics. This work
analises two strategies to implement the parallel version of
TVD Hopmoc based on the analysis performed by Intel Tools
such as Parallel and Threading Advisor. A naive solution is
substituted by a chunk loop strategy in order to avoid fine-
grain tasks inside main loops.

Keywords-Total Variation Diminishing; Hopmoc method;
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I. INTRODUCTION

The study of transport phenomena is essential in several

problems in science and engineering. More specifically, the

numerical solution of advection-diffusion transport arises

from various important applications in engineering, physics,

and chemistry. Significant examples of its use are found in

geophysical flows, such as meteorology and oceanography,

as well as in transport of contaminants in air, ground

water, rivers, and lagoons, oil reservoir flow, aerodynamics,

astrophysics, biomedical applications, in the modeling of

semiconductors, and so forth. In environment or reactive

fluid flow problems, contaminant or chemical species are

principally transported by the fluid in which it is dissolved.

Thus, the subject of study where the modeling of transport

processes is ample. Therefore, it is a significant topic in

numerical mathematics [12].

The Hopmoc method was proposed as a method to solve

parabolic problems with convective dominance in parallel

machines [14], [15]. This method addresses the issue of

parallelization from the beginning of the process, by devis-

ing a spatial decoupling that allows message-passing mini-

mization. The Hopmoc method is based on the Hopscotch

method [7], [8], [9], [6], [10]. The Hopscotch method is

a general-purpose scheme for the solution of second-order

parabolic and elliptic partial differential equations. The Hop-

moc method follows Hopscotch concepts in the sense that

the set of unknowns is decoupled into two subsets. These

subsets are calculated alternately by explicit and implicit ap-

proaches. The semi-steps are evaluated along characteristic

lines by a Semi-Lagrangian scheme considering concepts of

the Modified Method of Characteristics [13]. In this method,

the time derivative and the advection term are combined as

a direction derivative. To provide more specific detail, time

steps are considered in the flow direction along character-

istics of the velocity field of the fluid. In this approach,

large time steps are accepted without inserting serious time

truncation errors since the time-stepping direction is tracking

along characteristic lines where the unknowns are modified

gradually [2].

The Hopmoc method is a direct method in the sense that

the cost per time step is known a priori. In addition, it em-

ploys a strategy based on tracking values along characteristic

lines during time stepping. Moreover, the Hopmoc method

is a type of Eulerian-Lagrangian localized adjoint method

(ELLAM [3]) since it completely discretizes the domain

along characteristic lines. More specifically, an ELLAM-like

method provides a methodology that preserves the accuracy

and efficiency of an Eulerian-Lagrangian approach, whereas

also maintaining mass quantity and systematically handling

any sort of boundary condition [18].

Discretization of the advective term in transport equations
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is often plagued with serious difficulties. To avoid spurious

numerical oscillations, Harten [11] introduced the concepts

of Total Variation Diminishing (TVD) techniques and flux

limiter, which provide monotonicity-preserving properties

of stable higher-order accurate solutions of convection-

diffusion problems. TVD techniques have been successfully

applied in conjunction with numerical methods; recent ex-

amples are the publications of Fernandes et al. [5] and

Silveira and Barros [19].

This present paper is a result of our work in implementing

TVD techniques in conjunction with the Hopmoc method.

Specifically, this work shows a total variation diminishing

(TVD) scheme for numerical time integration of hyperbolic

equations that does not involve solving linear systems and

it’s parallel implementation.

The remainder of this paper is divided as follows. Section

II presents the Hopmoc method in details, including a figure

that illustrates the main idea. Specifically, this section pro-

vides a brief background on the traditional Hopmoc scheme

which we modify and improve in this manuscript. Section

III describes two parallel strategies for the TVD Hopmoc

method, assisted by Intel Tools analysis and respective

results. Section IV discusses some related work. Finally, V

discusses conclusion and future work.

II. THE HOPMOC METHOD

Consider the one-dimensional advection-diffusion equa-

tion in the form

ut + vux = duxx, (1)

with adequate initial and boundary conditions, where v rep-

resents a constant positive velocity, d is a positive constant

of diffusivity, and 0 ≤ x ≤ 1. In equation (1), ut refers to

the time derivative and not u evaluated at the discrete time

step t. Nevertheless, we abuse the notation and now use t
to denote a discrete time step so that 0 ≤ t ≤ T , for T time

steps.

Consider a conventional finite difference discretization for

this problem, with Δt = ut+1−ut and δt = Δt
2 = ut+ 1

2−ut

is a time semi-step of the method. The same characteristic

line allows to obtain u
(
x
t+ 1

2
i

)
and u

(
x
t
i

)
in the previous

two time semi-steps, for x
t+ 1

2
i = xi−v ·δt and x

t
i = xi−2v ·

δt, respectively, and the variable value u
(
x
t
i

)
is obtained by

interpolation [16], as described below. For clarity, a variable

in a previous time semi-step and in a previous time step are

written as u
t+ 1

2
i = u

(
x
t+ 1

2
i

)
and u

t
i = u

(
x
t
i

)
, respectively.

In addition, u
t+ 1

2
i is the variable in the previous time semi-

step in the foot of the characteristic line originated at xt+1
i .

Additionally, we use a uniform spatial discretization so that

Δx = xi+1 − xi [16].

In this work, discretization of diffusive terms is a three-

point finite difference scheme. When t is even, u
t+1
i is a

numerical approximation of u in (xi, u
t+1). Using the finite-

difference operator

Lh(u
t
i) = d

ut
i−1 − 2ut

i + ut
i+1

Δx2
, (2)

both consecutive time semi-steps of the Hopmoc method

can be written as u
t+ 1

2
i = u

t
i + δt

(
θtiLhu

t
i + θt+1

i Lhu
t+ 1

2
i

)

or ut+1
i = u

t+ 1
2

i + δt
(
θtiLhu

t+ 1
2

i + θt+1
i Lhu

t+1
i

)
, for θti =

1 (= 0) if t+ i is even (odd).

Figure 1 represents the Hopmoc method for a one-

dimensional problem. The discretization of the advective

term requires to calculate the values of the concentration

at midpoints of the sides of each grid interval, which are

obtained when employing a flux limiter.

Figure 1. Variable values u
t
i are used to calculate u

t+ 1
2

i in a first time

semi-step and subsequently the variable values u
t+ 1

2
i are used to calculate

ut
i in the second time semi-step in the Hopmoc method.

Oliveira et al. [16] presented the convergence analysis of

the Hopmoc method for an advection-diffusion equation.

HOPMOC method accuracy can be improved by a strategy

called Total Variation Diminishing (TVD) leading to a TVD

HOPMOC Method that does not present any difference from

the traditional HOPMOC‘s parallelization. So, the strategy

presented in this paper is focused on the TVD HOPMOC

Method.

III. PARALLEL TVD HOPMOC

Since the Hopmoc and TVD Hopmoc methods does not

solve any linear system [14], [15], [1], its parallelization is

easily employed because it allows division of the unknowns

into two disjoint subsets. Another advantage of the Hopmoc

method is that its computational cost is linear in the number

of unknowns per time step [1]. Each first step of the

Hopmoc method employs a linear interpolation to obtain

the initial estimative of the function value in the foot of the

characteristic line.
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Despite the fact that the method is easily parallelized its

always a challenge to achieve this goal in modern machines

when one considers the parallel efficiency and scalability.

To accomplish this on MIC Xeon Phi co-processors, one

should use Intel Tools such as, Vtune, Thread Advisor

and Parallel Advisor. These tools provide information about

microarchitecture level that can assist programmers to find

the best way to achieve required performance.

A. Intel Tools

This section presents the analysis performed by Intel

Parallel Studuio 2017 version for Haswell/Broadwell archi-

tectures and identifies the parts inside the code that can

permit optimization via vectorization and parallelization. To

accomplish that, Intel tools such as Intel VTune Amplifier,

reports generated by compiler, and Intel Advisor are used.

Such tools perform some kinds of analysis inside the source

and binary (executable) code and give hints on how to op-

timize the code. This task is mostly applied to performance

bottlenecks analysis inside the CPU pipeline. Modern CPUs

implement a pipeline together with other techniques like

hardware threads, out-of-order execution, and instruction-

level parallelism to use hardware resources as efficiently as

possible. The main challenge for an application programmer

is to take full advantage of these resources, because they

rely on the microarchitecture level, which is far distant from

the programming level available in modern and widely used

programming languages such as C, C++, and Fortran*. Intel

tools can help by analyzing compiler/linker and execution

times to identify how those resources are being used. First,

the compiler is able to inform a report where one can

discover what was automatically done and what was not, for

optimization goals. Sometimes a loop will be vectorized and

other times it will not, and in both cases the compiler tells

that and it’s useful to the programmer to know whether an

intervention is needed or not. Second, Intel VTune Amplifier

shows the application behavior in the pipeline and on the

memory usage. Its also possible to know how much time is

spent in each module and whether the execution is efficient

or not. Intel VTune Amplifier creates high-level metrics to

analyze those details, such as cycles-per-instruction, which

is a measure of how fast instructions are being executed.

Finally, Intel Advisor can speculate and tell how much

performance can be improved with thread parallelism. By

combining all these tips and results, the programmer is able

to make changes in the source code as well as in compiler

options to achieve the optimization goal.

B. Naive Attempt vs. Task Chunk versions of Paralleization

The first and simplest approach to parallelize Hopmoc

for Xeon Phi is to insert OpenMP pragmas in each loop

that solves: (1) linear interpolation; (2) explicit operators;

(3) implicit operators. The problem regarding this strategy

is that each of these calculations are too fine grained to take

advantage of parallelism.

Analysis performed by Intel Thread Advisor revealed that

even with most part of the code vectorized, the estimated

gain with OpenMP is strongly limited by this fine grain

content of each loop. The Advisor itself suggested a strategy

called task chunk to solve this issue. Chunking means

that the parallel framework will merge several tasks into

a single task, with little or no overhead between them. For

instance, if tasks are loop iterations, chunking would mean

that several iterations are executed together (as a chunk)

before heavyweight task control is performed.

This naive implementation in Xeon Phi KNC with the

offload code shown below confirms this prediction from

Intel Advisor. The strategy adopted regards on offloading

the main loop (time loop) into the co-processor and speedup

was limited to about 30 threads not more than that.

1 #pragma simd
2 #pragma omp for
3 for (int i = head+1 ; i <= N-2 ; i+=2) {
4 ANNOTATE_ITERATION_TASK(loop_HOP_EXP_1);
5 U_old[i] = alfa*(U_new[i-1] + U_new[i+1]) +

(1 - 2*alfa)*U_new[i];
6 }
7
8 #pragma omp single
9 head = (head+1)%2;

10
11 #pragma simd
12
13 #pragma omp for
14 for (int i = head+1; i <= N-2 ; i+=2) {
15 ANNOTATE_ITERATION_TASK(loop_HOP_IMP_1);
16 U_old[i] = (U_new[i] + alfa*U_old[i-1] + alfa

*U_old[i+1])/(1+2*alfa);
17 }
18
19 #pragma omp single
20 head = (head+1)%2;
21
22 #pragma simd
23 #pragma omp for
24 for (int i = head+1 ; i <= N-2 ; i+=2) {
25 ANNOTATE_ITERATION_TASK(loop_HOP_EXP_2);
26 U_new[i] = alfa*(U_old[i-1] + U_old[i+1]) +

(1 - 2*alfa)*U_old[i];
27 }
28
29 #pragma omp single
30 head = (head+1)%2;
31
32 #pragma simd
33 #pragma omp for
34 for (int i = head+1; i <= N-2 ; i+=2) {
35 ANNOTATE_ITERATION_TASK(loop_HOP_IMP_2);
36 U_new[i] = (U_old[i] + alfa*U_new[i-1] + alfa

*U_new[i+1])/(1+2*alfa);
37 }

Suitability Analysis performed by Intel Threading Ad-

visor, indicates that this Naive version presents 74.7% of

load imbalance and 100% of runtime overhead, specifically

thread schedule, due to small tasks inside each loop and so,

parallelism would not be as efficient as naturally expected.
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The same Advisor tool suggests a strategy called Task Chunk

which means that all loops inside the analyzed site wold

be theoretically merged into one singe loop. According to

Advisor, if this is done the load imbalance is reduced to

3.7% with no runtime overhead at all.
Unfortunately, because data dependency its impossible to

merge all loops inside the parallel site into a single one,

and a middle ground strategy was adopted, which its being

called herein as Chunk version.

1 t_ini = omp_get_wtime();
2 #pragma omp parallel
3 {
4 ANNOTATE_SITE_BEGIN(time_loop);
5 while (tempo < tempoFinal){
6 [...]
7 }
8 ANNOTATE_SITE_END();
9 }

10 t_fim = omp_get_wtime();

The annotations ANNOTATE SITE BEGIN ... ANNO-

TATE SITE END and ANNOTATE ITERATION TASK are

inserted in order to permit Intel Parallel Advisor run the

suitability analysis described in previous paragraph.
This analysis leaded to a version in which all Hopscoth

operators are merged into two separated loops, instead of

the traditional four loops. To accomplish this, a dependency

data was analyzed in order to guarantee that the loops are

suitable to parallelization, which means that the task inside

the loop may be computed concurrently. Each of these two

loops execute over a cluster of four point. The first one,

called E-cluster, is composed by the following points given

a i-th iteration (figure 2): for the t+ 1/2 time step, explicit

i− 1, explicit i+ 1, implicit i and finally explicit i for the

t+1 time step. The second one, called I-cluster, is composed

by (3): implicit i for t+1/2 time step and explicit i, implicit

i− 1 and implicit i+ 1, for t+ 1 time step.

1 #pragma omp for
2 for (int i = 4 ; i <= N-3 ; i+=4) {
3 U_til[i-1] = alfa*(U_til_til[i-2] +

U_til_til[i]) + (1 - 2*alfa)*
U_til_til[i-1];

4 U_til[i+1] = alfa*(U_til_til[i] +
U_til_til[i+2]) + (1 - 2*alfa)*
U_til_til[i+1];

5 U_til[i] = (U_til_til[i] + alfa*U_til[i
-1] + alfa*U_til[i+1])/(1+2*alfa);

6 U_new[i] = alfa*(U_til[i-1] + U_til[i
+1]) + (1 - 2*alfa)*U_til[i];

7 }
8
9 #pragma omp for

10 for (int i = 2 ; i <= N-5 ; i+=4) {
11 U_til[i] = (U_til_til[i] + alfa*U_new[i

-1] + alfa*U_new[i+1])/(1+2*alfa);
12 U_new[i] = alfa*(U_til[i-1] + U_til[i

+1]) + (1 - 2*alfa)*U_til[i];
13 U_new[i-1] = (U_til[i-1] + alfa*U_new[i

-2] + alfa*U_new[i])/(1+2*alfa);
14 U_new[i+1] = (U_til[i+1] + alfa*U_new[i

] + alfa*U_new[i+2])/(1+2*alfa);
15 }

Figure 2. E-cluster points

Figure 3. I-cluster points

Figure 4 exhibits the finite difference mesh composed by

the two cluster points. The first loop in the chunk version

is executed in parallel for all E-cluster points and then the

second loop executes, also in parallel, all the I-cluster points.

This cluster split strategy avoids data dependency permitting

safe parallelism.

Figure 4. Mesh composed by two cluster points

Both ”Naive” and ”Chunk” versions presents 71% of

vectorization efficiency, according to Intel Vector Advisor,

but due to augmented granularity of tasks the chunk version

is 50% faster than the naive version. This result is still

far from the gain estimated by Intel Parallel Advisor but

indicates that chunk task strategy is promising, specially

for two and three spatial dimensions because the number

of mathematical operations are naturally bigger than in one

dimension case.

Table I shows execution times (in seconds) in a Xeon Phi

KNC by two versions. Time was measured between only the

offload parallel region.

Figure 5 shows the speedup in function of the number of

threads for Naive version and figure 6 shows the same result
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Simulation Results
Threads Naive Version Time Chunk Version Time

1 769.17 784.94
5 163.38 163.89

10 88.74 87.20
20 46.24 42.21
30 39.05 32.57
40 34.90 26.42
50 33.70 24.94
60 31.93 22.98
120 29.52 19.08
180 28.51 18.84
240 29.60 18.79

Table I
COMPARISON BETWEEN NAIVE AND CHUNK VERSIONS

for the Chunk version. Both graphics exhibit results taken

from table I. Maximum speedup for Naive version is up to

26 with 120 threads and for Chunk version is up to 42 also

with 120 threads, which corresponds to a 50% increase in

speedup.

Figure 5. Naive version: Speedup x number of threads

Figure 6. Chunk version: Speedup x number of threads

IV. RELATED WORK

Load imbalance due to fine-grained task and data issues

have been investigated recently, specially for Xeon PHI

coprocessors. In [24] authors discusse TILE Loop strategy

in order to guarantee data locality for a matrix transposition

code. This approach addresses a nested loop structure cre-

ating some kind of chunk task as well, leading to a slightly

performance improvement in CPU but 30 % in coprocessor.

This result seems to be similar to strategy described herein as

augmented granularity was able to decrease load imbalance

and therefore increased speedup.

V. CONCLUSION AND FUTURE WORK

Methods for Partial Differential Equations can be tricky

as the tasks become too small in one-dimensional cases. To

overcome deficiencies about obtaining speedup one can use

Intel Tools such VTune, Parallel and Threading Advisor as

those tools provide hints on how programmers can change

original code in order to obtain desired speedup. In the case

explored herein a merge of all individual small tasks proved

to be a possible solution to obtain a task large enough to

become speedup possible, without preventing vectorization.

Other approaches using positive schemes and universal

limiters will be evaluated in future studies. In addition,

we intend to evaluate those schemes when applying them

to 2-D and 3-D parallel cases so that the scalability of

this approach will be evaluated in future investigations.

Additionally, we plan to compare how well the proposed

new method performs compared with other approaches,

especially one based on an approach of solving systems of

linear algebraic equations and analyse all those possibilities

with profiler tools in order to implement them in Intel Xeon

Phi KNC and KNL architectures.
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