
An Improved OpenMP Implementation
of the TVD–Hopmoc Method Based

on a Cluster of Points

Frederico Cabral1, Carla Osthoff1, Roberto Pinto Souto1, Gabriel P. Costa1,
Sanderson L. Gonzaga de Oliveira2, Diego N. Brandão3(B),

and Mauricio Kischinhevsky4

1 LNCC, Petrópolis, RJ, Brazil
{fcabral,osthoff,rpsouto,gcosta}@lncc.br

2 Universidade Federal de Lavras, Lavras, MG, Brazil
sanderson@dcc.ufla.br

3 CEFET/RJ, Rio de Janeiro, RJ, Brazil
diego.brandao@eic.cefet-rj.br

4 Universidade Federal Fluminense, Niterói, RJ, Brazil
kisch@ic.uff.br

Abstract. This paper concentrates on an OpenMP implementation of
the TVD–Hopmoc method with executions performed on IntelR© Many
Integrated Core and XeonR© Scalable Processor architectures. Specif-
ically, this paper evaluates an improved OpenMP implementation of
the TVD–Hopmoc method based on a cluster of points when applied
to the convection–diffusion equation in 1–D. Aiming at avoiding fine-
grained parallelism employed in a basic OpenMP implementation of the
TVD–Hopmoc method, this approach groups variables (located at sten-
cil points) to be calculated simultaneously in parallel instead of calcu-
lating them individually. Numerical experiments performed on IntelR©

Many Integrated Core and Scalable Processor architectures show that the
improved OpenMP implementation of the TVD–Hopmoc method based
on a cluster of points provides further worthwhile gains when compared
both with our previous implementation based only on parallel chunk
loops and a basic OpenMP implementation of this method.

Keywords: High perfomance computing · Parallel processing ·
Convection–diffusion equation

1 Introduction

The Hopmoc method was designed to solve parabolic convective–dominated
problems in parallel architectures (see [2] and references therein). It devises a
spatial partition of stencil points that allows how to minimize communication
among threads. The Hopmoc method subdivides the set of unknowns into two
subsets. Thus, the Hopmoc method divides each time step into two time semi–
steps. The unknowns containing in these subsets are calculated alternately by
c© Springer Nature Switzerland AG 2019
H. Senger et al. (Eds.): VECPAR 2018, LNCS 11333, pp. 132–145, 2019.
https://doi.org/10.1007/978-3-030-15996-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15996-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-15996-2_10


An Improved OpenMP Implementation of the TVD–Hopmoc Method 133

explicit and implicit approaches during the first and second time semi–steps,
respectively. The Hopmoc method evaluates time semi–steps along characteris-
tic lines using a Semi-Lagrangian approach taking into account concepts of the
Modified Method of Characteristics [11].

Discretization of the convective term in transport equations is frequently
afflicted with severe complications. To avoid spurious numerical oscillations,
Harten [3] introduced the concepts of Total Variation Diminishing (TVD) tech-
niques and flux–limiter formulations, which are stable higher–order accurate
solutions of convection–diffusion equations. The TVD–Hopmoc [4] uses a flux-
limiter formulation to calculate the value at the foot of the characteristic line
based on the Lax–Wendroff scheme and increase the accuracy of the original
Hopmoc method [4,8].

We evaluated a simple (or naive) OpenMP-based TVD–Hopmoc method.
This implementation was analyzed using the Intel R© Parallel Studio XE software
development product so that we followed its recommendations and proposed our
previous OpenMP-based TVD–Hopmoc method [8]. A further analysis using this
software led us to improve our earlier implementation. This paper presents this
enhanced OpenMP implementation and compares its results both with the naive
and our initial version of the TVD–Hopmoc method [8]. We investigate here
an approach that groups variables (located at stencil points) to be calculated
concomitantly in parallel instead of calculating them separately.

Various publications have been proposing to improve performance on Intel
Xeon Phi accelerators. These problem-solving techniques have been trying to
handle the challenge presented in this architecture to achieve linear speedups,
principally in OpenMP implementations. For example, Ma et al. [5] proposed
strategies to optimize the OpenMP implicit barrier constructs. These authors
revealed how to remove the OpenMP inherent barrier constructs when there
is no data dependence. Their second strategy uses a busy-waiting synchroniza-
tion. Their optimized OpenMP implementation obtained better results than the
basic OpenMP strategies. Caballero et al. [6] introduced a tree-based barrier
that uses cache locality along with SIMD instructions. Their approach achieved
a speedup of up to 2.84x over the basic OpenMP barrier in the EPCC barrier
micro-benchmark. Cabral et al. [7] evaluated the original Hopmoc method in dif-
ferent parallel programming paradigms. The authors, however, did not perform
the implementations on Intel R© Xeon R© Phi accelerators. A previous publication
[8] showed that a simple OpenMP implementation of the TVD-Hopmoc method
suffers from high load imbalance caused by the fine-grained parallelism used
inherently by the OpenMP standard. This implementation employed a parallel
chunk loop strategy to avoid the fine-grained parallelism, which improved its
performance in approximately 50%.

The remainder of this paper is structured as follows. Section 2 presents
the TVD–Hopmoc method in details. Section 3 explains a simple OpenMP
implementation of the TVD–Hopmoc method. Section 4 describes an improved
OpenMP-based TVD–Hopmoc method. Finally, Sect. 6 addresses the conclusion
and discusses future directions in this work.



134 F. Cabral et al.

2 The TVD–Hopmoc Method

We describe below the Hopmoc method in details (see [2] and references therein).
Consider the one–dimensional convection–diffusion equation in the form

ut + vux = duxx, (1)

with adequate initial and boundary conditions, where v represents a constant
positive velocity, d is a positive constant of diffusivity, and 0 ≤ x ≤ 1. In Eq. (1),
ut refers to the time derivative and not u evaluated at the discrete time step t.
Nevertheless, we abuse the notation and now use t to denote a discrete time step
so that 0 ≤ t ≤ T , for T time steps.

Consider also a conventional finite–difference discretization for this equation,
with Δt = ut+1 − ut, and δt = Δt

2 = ut+ 1
2 − ut represents a time semi–step of

the method. A characteristic line permits to obtain u
(
x

t+ 1
2

i

)
and u

(
x

t
i

)
in the

previous two time semi–steps, for x
t+ 1

2
i = xi − v · δt and x

t
i = xi − 2v · δt,

respectively, and the variable values u
(
x

t
i

)
are obtained using an interpolation

technique [2], as described below. For clarity, a variable in a previous time semi–

step and in a previous time step are written as u
t+ 1

2
i = u

(
x

t+ 1
2

i

)
and u

t
i = u

(
x

t
i

)
,

respectively. Additionally, u
t+ 1

2
i is the variable in the previous time semi–step at

the foot of the characteristic line originated at xt+1
i . Moreover, we use a uniform

spatial discretization so that Δx = xi+1 − xi [2].
We use a three–point finite–difference scheme in the discretization of diffu-

sive terms and u
t+1
i is a numerical approximation of u in

(
xi, u

t+1
)

when t is

even. Using the finite-difference operator Lh (ut
i) = d

ut
i−1−2ut

i+ut
i+1

Δx2 , the con-

secutive time semi–steps of the Hopmoc method can be written as u
t+ 1

2
i =

u
t
i + δt

(
θt

iLhu
t
i + θt+1

i Lhu
t+ 1

2
i

)
or ut+1

i = u
t+ 1

2
i + δt

(
θt

iLhu
t+ 1

2
i + θt+1

i Lhut+1
i

)
,

for θt
i = 1 (= 0) if t + i is even (odd).

The discretization of the convective term demands to calculate the values of
the concentration at midpoints of the sides of each grid interval. The method
obtains these values using a TVD scheme [4,8].

Our numerical simulations were performed for a Gaussian pulse with ampli-
tude 1.0, whose initial center location is 0.2, with velocity v = 1 and diffusion
coefficient d = 2

Re = 10−3 (where Re stands for Reynolds number), Δt = 10−7,
Δx is set as 10−5, 10−6, and 10−7 (i.e., 105, 106, and 107 stencil points, respec-
tively), and T is established as 104, 105, and 106.

3 A Basic OpenMP Implementation of the TVD–Hopmoc
Method

This section outlines a simple (or naive) OpenMP-based TVD–Hopmoc method.
We implemented the algorithms using the C++ programming language. Specifi-
cally, we used the icpc (Intel C++ compiler) version 2018, with the optimization



An Improved OpenMP Implementation of the TVD–Hopmoc Method 135

flags -xHost and -O3. Additionally, in Xeon Scalable Processors, the -qopt-zmm-
usage=high flag was used.

In short, this basic OpenMP implementation (i.e., using the OpenMP parallel
for directive) consists of the “main” time loop that performs two steps. Firstly,
the method computes the MMOC step, where the TVD Van Leer flux–limiter
scheme is implemented. Secondly, it executes the first and second (explicit and
implicit) semi–steps.

The simplistic approach to parallelize the TVD–Hopmoc method in execu-
tions on Intel R© Many Integrated Core Architecture is to insert OpenMP direc-
tives in specific loops of the code, for example, in loops that solve the explicit and
implicit operators. Algorithm 1 shows a fragment of pseudo-code that delineates
how this naive implementation performs a time step of the Hopmoc method.
This fragment of pseudo-code shows four for loops that calculate the two time
semi–steps of the algorithm using alternately explicit and implicit approaches.
The first and second (third and fourth) for loops calculate unknowns u

t+ 1
2

i

(
ut+1

i

)
using explicit and implicit approaches in the first (second) time semi–step. In
this naive implementation, we observed no improvement when using other forms
of OpenMP thread schedulings, such as OpenMP dynamic and guided schedul-
ings. The ANNOTATE ITERATION TASK macro instructs the Intel R© Advisor
shared memory threading assistance tool that these loops must be analyzed to
generate the performance estimates.

Algorithm 2 shows a fragment of a pseudo-code that is used to obtain the
suitability analysis carried out by the Intel R© Advisor shared memory threading
assistance tool. This fragment of pseudo-code shows an OpenMP parallel region
composed of a loop that iterates the time steps of the TVD–Hopmoc method.
Thus, this while loop is identified as a parallel region to be analyzed by the
Intel R© Advisor shared memory threading assistance tool.

We executed experiments with this simple OpenMP-based TVD–Hopmoc
method performed on a machine containing an Intel R© XeonTM CPU E5-2698
v3 @ 2.30 GHz composed of 32 physical cores. To evaluate our source code, we
analyzed it using the Intel R© Advisor shared memory threading assistance tool.
This analysis revealed that even with most of the implementation vectorized,
the gains using the OpenMP standard is limited. The reason for this is because
the calculations in the method are implemented using an approach with very
fine granularity to take full advantage of parallelism and HPC capabilities.

Figure 1 exhibits the results of an experiment performed with the support
of the Intel R© VTuneTM Amplifier performance profiler. This figure shows that
this simple OpenMP implementation obtains an inefficient performance in a
multicore environment in a simulation with T = 106 and Δx = 10−5, i.e., in a
mesh composed of 105 stencil points. Specifically, Fig. 1 reveals that the execution
of this implementation obtained high spin (imbalance or serial spinning) time
caused by the use of the implicit OpenMP strategies. Additionally, Fig. 1 exhibits
a high clock ticks per Instructions Retired (CPI) rate (1.301) achieved by the
basic OpenMP-based TVD–Hopmoc method.



136 F. Cabral et al.

Algorithm 1. A time step composed of four for loops that iterate the first and
second time semi–steps of a naive OpenMP-based TVD–Hopmoc method.
1: #pragma omp for

{First time semi–step of the Hopmoc method, where α = d ∗ δt
(δx)2

}
2: for i ← head + 1; i ≤ n − 2; i ← i + 2 do
3: ANNOTATE ITERATION TASK (loop HOP EXP 1);

u
t+ 1

2
i ← α ·

(
u

t
i−1 + u

t
i+1

)
+ (1 − 2α)u

t
i;

4: end for
{First time semi–step of the Hopmoc method using an implicit approach}

5: #pragma omp single
6: head ← (head + 1)%2;
7: #pragma omp for
8: for i ← head + 1; i ≤ n − 2; i ← i + 2 do
9: ANNOTATE ITERATION TASK (loop HOP IMP 1);

u
t+ 1

2
i ←

u
t
i+α·

(
u
t+1

2
i−1 +u

t+1
2

i+1

)

1+2α
;

10: end for
{Second time semi–step of the Hopmoc method using an explicit approach}

11: #pragma omp single
12: head ← (head + 1)%2;
13: #pragma omp for
14: for i ← head + 1; i ≤ n − 2; i ← i + 2 do
15: ANNOTATE ITERATION TASK (loop HOP EXP 2);

ut+1
i ← α ·

(
u

t+ 1
2

i−1 + u
t+ 1

2
i+1

)
+ (1 − 2α) · u

t+ 1
2

i ;

16: end for
{Second time semi–step of the Hopmoc method using an implicit approach}

17: #pragma omp single
18: head ← (head + 1)%2;
19: #pragma omp for
20: for i ← head + 1; i ≤ n − 2; i ← i + 2 do
21: ANNOTATE ITERATION TASK (loop HOP IMP 2);

ut+1
i ← u

t+1
2

i +α·(ut+1
i−1+ut+1

i+1)
1+2α

;
22: end for

Figure 2 displays a CPU usage histogram extracted from Advanced Hotspots
Analysis performed by the Intel R© VTuneTM Amplifier performance profiler. This
figure shows that the basic OpenMP-based TVD–Hopmoc method uses a small
number of cores concurrently. In particular, this implementation used on average
19 cores at the same time (in a machine composed of 32 cores).

Figure 3a shows a screen captured from the suitability report performed by
the Intel R© Advisor shared memory threading assistance tool. This figure shows
that the naive OpenMP-based TVD–Hopmoc method suffers from high load
imbalance and reaches 100% of runtime overhead. To provide specific detail, a
suitability analysis performed by the Intel R© Advisor shared memory threading
assistance tool indicated that the simple OpenMP-based TVD–Hopmoc method



An Improved OpenMP Implementation of the TVD–Hopmoc Method 137

Algorithm 2. Pseudo-code outlining how to obtain the suitability analysis per-
formed by the Intel R© Advisor shared memory threading assistance tool.
1: t beg ← omp get wtime();
2: #pragma omp parallel
3: {
4: ANNOTATE SITE BEGIN(time loop);
5: while (t < T ) do
6: [...]
7: end while
8: ANNOTATE SITE END();
9: }

10: t end ← omp get wtime();

Fig. 1. Execution time obtained by a basic OpenMP-based TVD–Hopmoc method
when analyzed with the support of the IntelR© VTuneTM Amplifier performance profiler.

Fig. 2. CPU usage histogram produced with the results of an execution of the basic
OpenMP-based TVD–Hopmoc method. This histogram was taken from Advanced
Hotspots Analysis performed by the IntelR© VTuneTM Amplifier performance profiler.
It displays a percentage of the wall time.



138 F. Cabral et al.

presents 75% of load imbalance and high runtime overhead, including high thread
scheduling time, due to fine-grained parallelism employed in this implementa-
tion. Additionally, there is no scalability gain when executing this implementa-
tion. Intel R© Advisor shared memory threading assistance tool advises that this
implementation is too fine-grain, and it is not adequate for multi-threading. This
software suggested to increase task granularity, reduce task overhead, or consider
vectorization in this implementation.

Fig. 3. Intel Advisor’s predictions.

4 An Improved OpenMP Implementation of the
TVD–Hopmoc Method Based on a Cluster of Points

This section presents an improved OpenMP implementation of the TVD–
Hopmoc method based on a cluster of points. As mentioned, we analyzed a
simple OpenMP-based TVD–Hopmoc method with the support of the Intel R©

Parallel Studio XE software for Intel’s Haswell/Broadwell architectures to dis-
cover the vulnerabilities of our code and consequently to propose solutions to
them.

Figure 3b shows another screen captured from the suitability report per-
formed by the Intel R© Advisor shared memory threading assistance tool when
enabling task chunking in the naive implementation of the TVD–Hopmoc
method (reported in Sect. 3). According to the Intel R© Advisor shared mem-
ory threading assistance tool, using this technique would reduce load imbalance
to 4% with no runtime overhead. Figure 3b also shows that the expected scala-
bility would be high if this approach were employed. Chunking is a strategy that
merges several tasks into a single one, i.e., they are executed together as a chunk,
with little or no overhead between them. In the case of using parallel chunk loops
in the source code, the programmer merges loops inside the analyzed site into



An Improved OpenMP Implementation of the TVD–Hopmoc Method 139

a single one. An implementation based on parallel chunk loops groups some
of them to consequently obtain a smaller number of parallel loops. Therefore,
the code employs a coarse–grained approach. However, data dependency limits
the use of this approach. In the case of the TVD–Hopmoc method, unknowns
that are approximated using an implicit approach depend on unknowns that
are solved using an explicit approach. Thus, it was not possible to integrally
follow this recommendation because of limitations in data dependency to cal-
culate variable values in the TVD–Hopmoc method. Therefore, we adopted an
intermediate solution. We referred to it as an implementation based on parallel
chunk loops in an earlier version [8].

We conducted then a further data dependency analysis with the objective
of building an implementation that groups stencil points to calculate them
in parallel. This analysis led us to implement an improved OpenMP-based
TVD–Hopmoc method that merges all operators in the Hopmoc method into
two loops, instead of using four loops as the original Hopmoc method performs
(see Algorithm 1). To provide further details, we analyzed data dependency to
guarantee that the loops are suitable for parallelism, i.e., to assure that tasks
inside loops are computed concurrently. Each of these two loops executes over a
cluster of four grid points. The first cluster of points, called I-cluster, is composed
of the two unknowns ut+1

i−1 and ut+1
i+1, which are solved using an implicit approach,

and the unknown ut+1
i , which is solved using an explicit approach during the

second time semi–step of the TVD–Hopmoc method (see Fig. 4a). Additionally,

the unknown u
t+ 1

2
i belongs to this cluster of points. It is solved using an implicit

approach in the first time semi–step of the TVD–Hopmoc method.

(a) E-Cluster (b) I-Cluster

Fig. 4. Two strategies for clustering points.

Figure 4b shows the second cluster of points employed in this scheme, called
E-cluster. This cluster of points is also composed of four unknowns. The E-cluster
is composed of an unknown ut+1

i that is solved using an explicit approach during
the second time semi–step and three unknowns that are solved during the first
time semi–step of the TVD–Hopmoc method: u

t+ 1
2

i , u
t+ 1

2
i−1 , and u

t+ 1
2

i+1 .



140 F. Cabral et al.

The finite-difference mesh can be composed of these two types of a cluster of
points [8]. In particular, this scheme allows that balancing load to be evaluated
during runtime so that adjacent clusters of points in a level l can be grouped
again to form a larger cluster of points in a level l + 1.

Algorithm 3 shows a fragment of pseudo-code that illustrates the first and
second time semi–steps of the Hopmoc method. Specifically, Algorithm 3 displays
that the four parallel for loops outlined in Algorithm1 (from a naive OpenMP
implementation) are substituted by two parallel for loops that calculate all
E-clusters and I-clusters. Using this scheme to cluster points, our OpenMP-based
TVD–Hopmoc method avoids data dependency and increases parallelism.

Algorithm 3. Pseudo-code depicting the first and second time semi–steps of
the improved OpenMP-based TVD–Hopmoc method.
1: [...]

{Compute all E-clusters}
2: #pragma omp for
3: for i ← 2; i ≤ n − 3; i ← i + 4 do

4: u
t+ 1

2
i−1 ← α ·

(
u

t
i−2 + u

t
i

)
+ (1 − 2α) · u

t
i−1;

5: u
t+ 1

2
i+1 ← α ·

(
u

t
i+2 + u

t
i

)
+ (1 − 2α) · u

t
i+1;

6: u
t+ 1

2
i ← u

t
i+α·ut+1

2
i−1 +α·ut+1

2
i+1

1+2α
;

7: ut+1
i ← α ·

(
u

t+ 1
2

i−1 + u
t+ 1

2
i+1

)
+ (1 − 2α) · u

t+ 1
2

i ;

8: end for
{Compute all I-clusters}

9: #pragma omp for
10: for i ← 2; i ≤ n − 5; i ← i + 4 do

11: u
t+ 1

2
i ← u

t
i+αut+1

i−1
1+2α

;

12: ut+1
i ← α ·

(
u

t+ 1
2

i−1 + u
t+ 1

2
i+1

)
+ (1 − 2α) · u

t+ 1
2

i ;

13: ut+1
i−1 ← u

t+1
2

i−1 +α·(ut+1
i +ut+1

i−2)
1+2α

;

14: ut+1
i+1 ← u

t+1
2

i+1 +α·(ut+1
i +ut+1

i+2)
1+2·α ;

15: end for

Figure 5a exhibits the results of an experiment performed with our previous
implementation [8] and the support of the Intel R© VTuneTM Amplifier perfor-
mance profiler. In an experiment with T = 106 and Δx = 10−5, i.e., in a mesh
composed of 105 stencil points, this figure displays that our previous OpenMP-
based TVD–Hopmoc method [8] obtained lower execution time (1159 s) than
the basic OpenMP implementation of this method (1560 s; see Fig. 1). Further-
more, Fig. 5a exhibits that our previous OpenMP-based TVD–Hopmoc method
[8] obtained lower wall time (36 s) than the basic OpenMP implementation of this



An Improved OpenMP Implementation of the TVD–Hopmoc Method 141

method (49 s). On the other hand, Fig. 5a shows a high Clockticks per Instruc-
tions Retired (CPI) rate (1.418) yielded by our previous OpenMP implementa-
tion of the TVD–Hopmoc method based uniquely on parallel chunk loops [8].

(a) CoP (b) iCoP

Fig. 5. Execution time obtained by the simple and the improved cluster of points
implementations of the TVD–Hopmoc method when analyzed with the support of the
IntelR© VTuneTM Amplifier performance profiler.

Figure 6a displays a CPU usage histogram taken from Advanced Hotspots
Analysis performed by the Intel R© VTuneTM Amplifier performance profiler. This
figure displays that our previous method [8] used on average 22 cores concur-
rently when performed on the machine aforementioned.

(a) CoP (b) iCoP

Fig. 6. CPU usage histogram produced in an execution of simple and the improved
OpenMP implementation of the TVD–Hopmoc method based on a cluster of points.
This histogram was captured from Advanced Hotspots Analysis produced by the IntelR©

VTuneTM Amplifier performance profiler.

Also with the objective of avoiding fine-grained parallelism, we improved our
previous OpenMP-based implementation of the TVD–Hopmoc method [8] by
combining two time steps in the same while loop. With this improvement, data
are updated straightforwardly to the next iteration instead of performing this
explicitly as our previous implementation carried out [8]. Then, to distinguish
this implementation from the earlier algorithm [8], we will refer the new version
as improved OpenMP implementation of the TVD–Hopmoc based on a cluster
of points (iCoP for short). Both codes are thread-safe codes.



142 F. Cabral et al.

According to the Intel R© Advisor shared memory threading assistance tool,
both implementations present 71% of vectorization efficiency. Our OpenMP-
based TVD–Hopmoc method is 50% faster than the naive implementation.

Experiments with the use of our previous implementation [8] and the
improved OpenMP implementation of the TVD–Hopmoc method were also per-
formed on a machine containing an Intel R© XeonTM CPU E5−2698 v3 @ 2.30 GHz
with 32 physical cores. Again, we established T = 106 and Δx = 10−5, i.e.,
the mesh was composed of 105 stencil points. Figure 5b shows the results of
an experiment performed with the improved OpenMP implementation of the
TVD–Hopmoc method based on a cluster of points and the support of the
Intel R© VTuneTM Amplifier performance profiler. This figure shows that the
improved OpenMP-based TVD–Hopmoc method obtained lower execution time
(951 s) than our previous OpenMP implementation of this method (1159 s; see
Fig. 5a). Furthermore, Fig. 5b shows that the improved OpenMP-based TVD–
Hopmoc method obtained lower wall time (30 s) than our previous OpenMP
implementation [8] of this method (36 s). Furthermore, this figure displays that
the improved OpenMP implementation of the TVD–Hopmoc method based on
cluster of points reaches a lower Clockticks per Instructions Retired (CPI) rate
(1.291) than both the simple OpenMP implementation (1.301) and our previ-
ous OpenMP implementation of the TVD–Hopmoc method based exclusively on
parallel chunk loops (1.418).

Figure 6b shows a CPU usage histogram generated from the use of the Intel R©

VTuneTM Amplifier performance profiler. This figure shows that the improved
OpenMP implementation of the TVD–Hopmoc method [8] used on average 23
cores simultaneously when performed on the machine aforementioned.

5 Experimental Results

The first part of this section shows the results of OpenMP implementations of
the TVD–Hopmoc method. Intel’s OpenMP implementation specifies environ-
ment variables that define the policy of binding OpenMP threads to physical
processing units (i.e., cores). Thread affinity can have a considerable impact on
the computing time of the application. Although this also depends on the system
(machine) topology and operating system, we evaluated our OpenMP implemen-
tation of the TVD–Hopmoc method based on a cluster of points along with three
thread binding policies, namely balanced, compact, and scatter policies.

Figure 7 shows speedups obtained by those three OpenMP implementations
of the TVD–Hopmoc method when applied to the same meshes described ear-
lier in executions performed on a machine containing an Intel R© Xeon PhiTM

Knights-Corner (KNC) accelerator 5110P, 8 GB DDR5, 1.053 GHz, 60 cores, 4
threads per core. The highest speedup reached by the improved implementation
based on cluster of points, implementation based only on parallel chunk loops [8],
and simple implementation were 56x, 49x, and 28x (106x, 105x, and 95x) [80x,
72x, and 58x], respectively, when applied to a mesh comprised of 105

(
106

) [
107

]



An Improved OpenMP Implementation of the TVD–Hopmoc Method 143

stencil points and T set as 106
(
105

) [
104

]
. The results of our OpenMP-based

TVD–Hopmoc presented in Fig. 7 employed the scatter policy. This binding pol-
icy yielded the same maximum speedup as the two other policies evaluated when
applied to this machine.

Fig. 7. Speedups obtained by three OpenMP implementations of the TVD–Hopmoc
method (iCoP, chunk loops [8], and naive implementation) applied to meshes composed
of 105, 106 and 107 stencil points and T specified as 106, 105, and 104, respectively, in
executions performed on an IntelR© Xeon PhiTM KNC accelerator.

Figure 8 shows the results of two OpenMP implementations in runs performed
on a machine containing an Intel R© Xeon R© Platinum 8160 CPU @ 2.10 GHz,
with two nodes with 24 cores, 2 threads per core. This figure reveals that our
iCoP approach of the TVD–Hopmoc method alongside the balanced binding
policy obtained a speedup of approximately 17x (using 95 threads) in this exper-
iment, against a speedup of 11x reached by our previous implementation of the
TVD–Hopmoc method [8].

The balanced binding policy distributes threads among physical cores before
assigning them to logical cores. Keeping in mind that the system contains two
sockets, where each of them holds 24 cores with two threads per core, the bal-
anced (compact) policy assigns threads to both sockets when using more than
24 (48) threads, and consequently, a higher inter-socket communication arises
when the system uses this number of threads. Then, when using from 25 to 80
(from 48 to 96) threads, the speedups obtained by the iCoP approach along with
the balanced (compact) binding policy significantly vary (see Fig. 8). The same
characteristic occurs when employing the CoP approach [8].



144 F. Cabral et al.

Fig. 8. Speedups of two OpenMP implementations of the 1-D TVD–Hopmoc method
applied to meshes composed of 106 stencil points and T established as 105, in runs
performed on an IntelR© XeonR© Scalable Processor architecture.

6 Conclusions and Future Directions

This work used Intel R© Parallel Studio XE tools to analyze a simple OpenMP-
based TVD–Hopmoc method in simulations performed on a machine containing
an Intel R© XeonTM CPU E5-2698 v3 @ 2.30 GHz composed of 32 physical cores.
As a result, this paper proposed an improved OpenMP implementation of this
method based on a cluster of points that obtained a speedup up to 106x (against
a speedup of 95x of a naive OpenMP implementation) when applied to a mesh
composed of 106 stencil points in runs carried out on an Intel R© Xeon PhiTM KNC
accelerator. Our improved OpenMP implementation of the method achieved a
speedup up to 17x (against a speedup of 11x obtained by our previous OpenMP
implementation) when applied to a mesh composed of 106 stencil points in runs
performed on an Intel R© Xeon R© Scalable Processor. In particular, this work
shows how to improve a parallel algorithm based on parallel loops that present
high load imbalance by employing a strategy based on parallel chunk loops when
analyzing data dependence.

The speedup obtained by our improved method based on a cluster of points
was smaller when setting a small number of time steps T than establishing a large
number of iterations T (see Fig. 7). In future studies, we intend to investigate the
reasons for high cache miss rates and consequently lower speedups in simulations
establishing a small number of time steps. Moreover, new studies will be carried
out to obtain an implementation that boosts data locality and, hence, generates
high cache hit rates. Additionally, we also plan to investigate a coarse–grained
implementation that employs an explicit synchronization mechanism capable of
providing high speedups in an OpenMP-based TVD–Hopmoc method, even in
simulations with a small number of time steps.

Acknowledgement. The Conselho Nacional de Desenvolvimento Cient́ıfico e Tec-
nológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior
(CAPES), and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)
supported this work. We would like to thank the Núcleo de Computação Cient́ıfica at
Universidade Estadual Paulista (NCC/UNESP) for letting us execute our simulations



An Improved OpenMP Implementation of the TVD–Hopmoc Method 145

on its heterogeneous multi-core cluster. These resources were partially funded by IntelR©

through the projects entitled Intel Parallel Computing Center, Modern Code Partner,
and Intel/Unesp Center of Excellence in Machine Learning.

References

1. Holstad, A.: The Koren upwind scheme for variable gridsize. Appl. Num. Math.
37, 459–487 (2001)

2. Oliveira, S.R.F., de Oliveira, S.L.G., Kischinhevsky, M.: Convergence analysis of
the Hopmoc method. Int. J. Comput. Math. 86, 1375–1393 (2009)

3. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput.
Phys. 49, 357–393 (1983)

4. Brandão, D.N., Gonzaga de Oliveira, S.L., Kischinhevsky, M., Osthoff, C., Cabral,
F.: A total variation diminishing hopmoc scheme for numerical time integration
of evolutionary differential equations. In: Gervasi, O., et al. (eds.) ICCSA 2018.
LNCS, vol. 10960, pp. 53–66. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-95162-1 4

5. Ma, H., Zhao, R., Gao, X., Zhang, Y.: Barrier optimization for OpenMP program.
In: Proceedings of 10th ACIS International Conference on Software Engineering,
Artificial Intelligences, Networking, Parallel and Distributed Computing, pp. 495–
500 (2009)

6. Caballero, D., Duran, A., Martorell, X.: An OpenMP* barrier using SIMD Instruc-
tions for IntelR© Xeon PhiTM coprocessor. In: Rendell, A.P., Chapman, B.M.,
Müller, M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp. 99–113. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40698-0 8

7. Cabral, F.L., Osthoff, C., Kischinhevsky, M., Brandão, D.: Hybrid MPI/
OpenMP/OpenACC implementations for the solution of convection diffusion equa-
tions with HOPMOC Method. In: Proceedings of 14th International Conference
on Computational Science and Its Applications (ICCSA), pp. 196–199 (2014)

8. Cabral, F.L., Osthoff, C., Costa, G.P., Brandão, D., de Oliveira, S.L.G.: Tuning
up TVD HOPMOC method on Intel MIC Xeon Phi architectures with Intel Par-
allel Studio Tools. In: Proceedings of the International Symposium on Computer
Architecture and High Performance Computing Workshops (SBAC-PADW), pp.
19–23 (2017)

9. Gourlay, A.R., McKee, S.: The construction of Hopscotch methods for parabolic
and elliptic equations in two space dimensions with mixed derivative. J. Comput.
Appl. Math. 3, 201–206 (1977)

10. van Leer, B.: Towards the ultimate conservative difference schemes. J. Comput.
Phys. 361–370 (1974)

11. Douglas Jr., J., Russel, T.F.: Numerical methods for convection-dominated diffu-
sion problems based on combining the method of characteristics with finite element
or finite difference procedures. SIAM J. Num. Anal. 19, 871–885 (1982)

https://doi.org/10.1007/978-3-319-95162-1_4
https://doi.org/10.1007/978-3-319-95162-1_4
https://doi.org/10.1007/978-3-642-40698-0_8

	An Improved OpenMP Implementation of the TVD–Hopmoc Method Based on a Cluster of Points
	1 Introduction
	2 The TVD–Hopmoc Method
	3 A Basic OpenMP Implementation of the TVD–Hopmoc Method
	4 An Improved OpenMP Implementation of the TVD–Hopmoc Method Based on a Cluster of Points
	5 Experimental Results
	6 Conclusions and Future Directions
	References




