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Summary

This paper focuses on parallel implementations of three two-dimensional explicit numerical

methods on Intel® Xeon® Scalable Processor and the coprocessor Knights Landing. In this

study, the performance of a hybrid parallel programming with message passing interface (MPI)

and Open Multi-Processing (OpenMP) and a pure MPI implementation used with two thread

binding policies is compared with an improved OpenMP-based implementation in three explicit

finite-difference methods for solving partial differential equations on shared-memory multicore

and manycore systems. Specifically, the improved OpenMP-based version is a strategy that

synchronizes adjacent threads and eliminates the implicit barriers of a naïve OpenMP-based

implementation. The experiments show that the most suitable approach depends on several

characteristics related to the nonuniform memory access (NUMA) effect and load balancing,

such as the size of the MPI domain and the number of synchronization points used in the

parallel implementation. In algorithms that use four and five synchronization points, hybrid

MPI/OpenMP approaches yielded better speedups than the other versions did in runs performed

on both systems. The pure MPI-based strategy, however, achieved better results than the other

proposed approaches did in the method that employs only one synchronization point.
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1 INTRODUCTION

The current propensity for multicore architectures and the widespread use of manycore systems emphasize the demand for parallel solutions.

Developers face a difficult decision regarding which programming model to use since researchers have proposed new languages, application

program interfaces (APIs), and other alternatives for operating these architectures more efficiently. Open Multi-Processing (OpenMP) and

message passing interface (MPI) are two dominant models commonly employed in parallel solutions. A developer should use OpenMP, MPI, or a

hybrid version depending on the system configurations in context. The type of problem in context and its size also influence the performance of

applications that employ these programming models. Practitioners have performed comparisons involving single shared memory systems, shared

memory clusters, and distributed memory clusters. As the industry launches new architectures, the literature requires up-to-date performance

evaluations of state-of-the-art parallel solutions for programming the new systems.

Presently, multicore and manycore clusters are the most favored alternative for the arrangement of high-performance computing (HPC)

infrastructures, owing to the scalability, performance, and expense ratio of these architectures. Practitioners typically program these architectures
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using MPI1 on distributed memory, OpenMP on shared memory, and MPI with OpenMP on hybrid shared or distributed memory systems.

Attaining a high parallel performance gain, however, is not simple in practice. Much of the success of the OpenMP model is because it has a

simple interface. OpenMP requires less programming effort than MPI. Additionally, much of the synchronization and data sharing is transparent

for the OpenMP user. OpenMP is also efficient for sharing data between threads because this standard can access shared memory directly

without the need for communicating explicitly and copying data on the same node. However, publications report that achieving high efficiency

with OpenMP when using a large number of cores and threads is not trivial.2 Additionally, it is not clear if all applications and hardware platforms

can effectively benefit from an MPI/OpenMP approach (see the work of Bassi et al3 and references therein). Bassi et al3 cited five reasons:

(1) the code should be fully parallelized, including in the OpenMP context; (2) the use of OpenMP involves overhead due to the initialization

of parallel and work-sharing regions; (3) explicit and implicit synchronizations of some of the work-sharing constructs also cause overhead; (4)

the penalization caused by false sharing of cache lines among processors also generates a time delay; and (5) the API suffers from the reduction

of the memory bandwidth of cache-coherent nonuniform memory access (NUMA) hardware used for the most recent and popular multicore

processors. Bassi et al3 also explained that some of these arguments emphasize the dominant influence of the hardware characteristics on parallel

efficacy. The authors considered that developers should take into account the number of NUMA regions within a node. Additionally, the authors

should consider the resulting latency when transferring data from the random access memory of one of these NUMA regions to the cache

memory of the core associated with a different region. OpenMP offers no instruction for making the deployment of data in a specific NUMA

region. Developers can either use a first contact strategy or employ some operating system call, such as numactl, which provides the ability to

control NUMA scheduling and memory placement policies. Developers can partially control the affinity of data to a socket. Even if they can boost

the OpenMP performance, the efficacy of these strategies may change with the platform hardware and the operating system. Additionally, the

compiler influences the efficacy of OpenMP.3

Previous work has found that a naïve OpenMP-based implementation of an explicit method for solving partial differential equations (PDEs)

is inefficient.2 Thus, a previous publication4 proposed an OpenMP-based one-dimensional (1D) Hopmoc method in tandem with total variation

diminishing (TVD)5 for numerical time integration of evolutionary differential equations. We evaluated the approach in executions performed

on machines featuring Intel® Many Integrated Core and Xeon® Scalable Processor architectures. The approach achieved low speedups when

a small number of time steps were set. Nevertheless, the parallel approach boosts data locality and, consequently, generates high cache hit

rates. Additionally, we investigated a coarse-grained implementation that employs an explicit synchronization mechanism capable of providing

high speedups in an OpenMP-based TVD-Hopmoc method, even in simulations involving a small number of time steps. As a result, Cabral et al2

proposed a scheme consisting of synchronizing only adjacent threads. The approach employs an explicit work-sharing (EWS) strategy to reduce

the OpenMP scheduling time. The OpenMP-based 1D TVD-Hopmoc method partitions among threads an array that represents the computational

mesh instead of allowing the OpenMP API to perform thread scheduling implicitly. Thus, the OMP-EWS scheme avoids barriers using an explicit

synchronization mechanism. Specifically, a thread waits only for two adjacent threads in the OMP-EWS approach. Therefore, the approach

diminishes the OpenMP spin time required in executions performed on shared-memory multicore and manycore architectures. Despite the

satisfactory performance, the OMP-EWS approach employs a busy waiting loop for thread synchronization. On the other hand, MPI performs

communication between processes automatically. This feature motivated us to compare the performance of the APIs in implementing explicit

parallel methods.

Developers perform communication among processes explicitly with MPI. Moreover, a large set of functions in the MPI API permits high

performance and adjusts, which is not available in OpenMP. Designing MPI-based implementations for distributed memory systems is a common

practice. Nevertheless, because there is a limited amount of message exchange in the parallel implementation discussed in the present study, we

investigated whether the MPI API can also perform well on shared-memory systems. Our motivation is that each process communicates only with

its neighboring processes in the parallel implementations. For example, although a hybrid MPI/OpenMP implementation achieved better results

than the pure MPI strategy did, Bassi et al3 claimed that a discontinuous Galerkin solver is well suited for a pure MPI-based implementation

because of how their parallel implementation partitions the domain. Thus, we investigated the selection of the best paradigm for each specific

application running on multicore or manycore platforms. Specifically, this paper evaluates the use of pure MPI, the OMP-EWS approach,2

and hybrid MPI/OMP-EWS approaches with scatter and compact thread binding policies aiming at improving the parallel efficiency of three

explicit finite-difference (FD) methods for solving PDEs running on Intel® Many Integrated Core and Xeon® Scalable Processor shared-memory

architectures. We apply the approaches to Laplace's, heat conduction, and advection-diffusion equations.

In executions performed on the machine featuring an Intel® Xeon® Scalable Processor shared-memory architecture, the hybrid MPI/OMP-EWS

version of the three explicit FD methods employed two MPI processes (one process per socket), setting the number of threads from 1 to 48. In

particular, we used the next neighbor halo exchange communication pattern.

In executions performed on the machine featuring an Intel® Many Integrated Core shared-memory architecture, we evaluated two hybrid

MPI/OMP-EWS versions. First, each single physical CPU core had an MPI process with four threads. Thus, each process had dedicated level 1

cache memory, and the compact and scatter thread binding policies had distinct results. We varied the number of processes from 1 to 68 in the

approach. We refer to this strategy as the MPI/OMP-EWS core approach. Thus, we executed this hybrid MPI/OMP-EWS version in conjunction

with scatter and compact thread binding policies. Second, each tile was allocated to an MPI process. A tile contains two physical CPU cores that

shares the same level 2 cache memory (containing 1 MB on the machine used in this study). In this case, we varied the number of processes

from 1 to 34, with eight threads per process. We refer to this strategy as the MPI/OMP-EWS level 2 (L2) approach. This hybrid MPI/OMP-EWS
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approach delivered the same results when applied in tandem with scatter and compact thread binding policies. Our goal was to verify which of

these approaches was best suited to be employed with the three 2D explicit FD methods evaluated.

This paper is organized as follows. In Section 2, an overview of recent publications using HPC shared-memory resources is provided. In

Section 3, the three methods used in the computational experiment are reported. In Section 4, the parallel approaches evaluated in this study are

described. In Section 5, benchmarking results obtained from multicore and manycore systems are shown and analyzed. Finally, In Section 6, the

main conclusions of this computational experiment are presented.

2 RELATED WORK

The widespread use of multicore processors requires performance evaluations of algorithms based on pure MPI-based versions against

OpenMP-based implementations on multicore architectures. Previous publications described that the best model depends on the context.

Mallón et al6 presented a comparative performance evaluation of MPI and OpenMP on an HP Integrity Superdome system with 64 Montvale

Itanium two dual-core processors (total 128 cores) at 1.6 GHz and using 1 TB of memory. The authors employed two applications to evaluate the

performance and scalability of these parallel programming solutions: a matrix multiplication kernel and the Sobel edge detection kernel. When

128 cores were used, both platforms suffered from remote memory access and poor bidirectional traffic performance in the cell controller.

OpenMP dominated MPI in three scenarios. The first example was an iterative solver that tested regular communications in sparse matrix-vector

multiplications. The second scenario was a series of executions of 1D Fast Fourier transform procedure on a three-dimensional (3D) mesh that

evaluated aggregated communication performance. The third example was a large integer sorting algorithm. The last application evaluated the

integer computation performance and aggregated communication throughput. Speedups using OpenMP were usually higher than those of MPI

due to its direct shared memory access, which avoids memory copies as in MPI. MPI yielded better results in two cases. The first case was a

parallel code that assessed floating-point performance without meaningful communication, whereas the second case was a simplified multigrid

kernel that performed short-distance and long-distance communication.

For a similar purpose, Chan and Yang7 compared pure MPI with OpenMP in eight parallel benchmark problems taken from the NASA Advanced

Supercomputing Division: a block tridiagonal solver, the conjugate gradient method, an embarrassingly parallel benchmark, a solver of a 3D PDE

using the fast Fourier transform, the bucket sort for sorting integers, a simulated computational fluid dynamics (CFD) application that split the

problem into block lower and upper triangular systems, a V-cycle multigrid method for solving a 3D scalar Poisson equation, and a CFD application

involving a scalar pentadiagonal solver. The authors compared pure MPI and OpenMP. OpenMP outperformed MPI in most cases in execution

time. OpenMP scalability was also better than MPI in executions performed with a large number of cores. The communication overhead in the

MPI standard showed the main weakness of the programming model in these problems. Communication overhead is the fraction of time that an

application spends communicating with the team of processes instead of performing productive work. The authors used eight different problems,

and some affected communication more than others.

As previously mentioned, the widespread use of multicore processors also demands performance evaluation of hybrid MPI and OpenMP

implementations. Several publications have evaluated hybrid MPI and OpenMP implementations when applied to improve the parallel efficiency

of applications running on clusters of multicore nodes. Drosinos and Koziris8 compared the performance of three programming paradigms for

the parallelization of nested loop algorithms on symmetric multiprocessor (SMP) clusters. The authors concluded that hybrid approaches could

be more beneficial in some cases than the monolithic pure message-passing model. The reason is that hybrid approaches adequately utilize the

resources of a hierarchical parallel platform, such as an SMP cluster.

Along the same line, Jones and Yau9 proposed a hybrid MPI and OpenMP approach to improve the parallel efficiency of the ordered-subsets

expectation-maximization algorithm for reconstructing 3D positron emission tomography images. The algorithm reduced the interprocessor data

exchange time, which was the dominant limiting factor of parallel efficiency of the MPI model when a large number of processors were used

for the shared memory and the single system image distributed shared memory architectures. The hybrid MPI and OpenMP approach achieved

consistent improvement in terms of speedup on a large number of parallel processors compared to the pure MPI approach.

Many publications have also investigated hybrid MPI and OpenMP implementations on manycore architectures. Jeffers et al10 evaluated

parallel implementations of an explicit FD solution of the Poisson equation. Similar to our study, the authors compared a hybrid implementation

(an MPI/OpenMP approach and an MPI-based implementation with threads) with a pure MPI-based implementation on a manycore architecture.

The study employed a stencil mesh of size 3000 × 3000 using 1, 2, 4, and 8 nodes simultaneously, where each node was an Intel®

Xeon® Phi Knights Landing accelerator. The authors concluded that the hybrid version yielded better results than the pure MPI-based

implementation.

In the same vein, Cafaro et al11 investigated the behavior of parallel shared-memory implementations of the space-saving algorithm concerning

accuracy and performance on manycore and multicore processors, including an Intel® Phi 7120P accelerator. Specifically, the authors evaluated

a hybrid MPI/OpenMP version (ie, MPI internode and OpenMP intranode) against a pure MPI-based version of their algorithm using up to

512 cores. The hybrid MPI/OpenMP implementation delivered considerable better performance than the pure MPI version of the algorithm. The

results showed that the MPI/OpenMP version of the algorithm substantially improved the parallel speedup and efficiency due to the use of the
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shared-memory approach. The authors concluded that the Intel® Phi accelerator was not useful for their algorithm because it exhibited a highly

limited data locality, and the noncontiguous memory access restricts the exploitation of the cache hierarchy.

Similarly to the previous publications, Koleva-Efremova12 compared the performance and scalability of the pure MPI-2 API with the hybrid

MPI-2 and OpenMP implementation in executions performed on the supercomputer system Avitohol. The author used two Intel® benchmark

tests: ping-pong operations and one-sided communication. The hybrid MPI/OpenMP implementation provided better memory consumption

compared with the pure MPI-2 version.

The MPI shared memory model, supported by the Intel® MPI Library since version 5.0.2, permits changes to existing MPI codes aiming at

accelerating communication between processes on shared-memory nodes. Brinskiy et al13 evaluated the use of this model. The authors concluded

that the model could benefit applications that use the next neighbor-halo exchange communication pattern.

Researchers have investigated the NUMA architecture in specific applications. Bassi et al3 described a hybrid MPI/OpenMP implementation

of a discontinuous Galerkin solver. The authors restricted the use of MPI calls when performing communication between nodes. The authors

showed that the performance is heavily dependent on hardware platforms, as well as on computational details, such as either the polynomial

order of space discretization or the number of computational elements. The authors' hybrid strategy generally was more efficient than the pure

MPI-based version. The same authors concluded that the best performance could be obtained only with the proper choice of the number of MPI

partition and OpenMP threads within a single node. Bassi et al3 recommended considering the NUMA architectures to avoid the reduction of the

memory bandwidth of CPUs. The authors also suggested that placing an MPI process in each NUMA region obtains optimal use of the hardware.

Publications in another group of related work evaluated the performance gains of hybrid MPI/OpenMP implementations that rely on

load-balancing techniques. Similar to our implementation, these publications improved performance by decreasing memory synchronization

overhead. Vu and Alaghband14 proposed a hybrid MPI/OpenMP parallel method that enables frequent pattern mining on a cluster containing

multiple multicore nodes. The authors employed a multistrategy load-balancing approach to balance the mining workload among all cores. The

experimental results showed that the hybrid method improved performance related to the pure MPI approach.

Although a hybrid MPI/OpenMP implementation, in general, outperforms a pure MPI-based version, the best model depends on specific

characteristics. Ferretti et al15 reported that a pure OpenMP-based implementation of the cross-motif search algorithm is extremely inefficient,

and cannot scale appropriately. Then, the authors described a hybrid shared-memory version of the algorithm using MPI. The same authors

concentrated on the dependence of performance in the hybrid approach on the workload unbalance. A ‘‘slave’’ module was responsible for

processing all protein pairs received from a ‘‘master’’ module. The communication between the master modules used shared-memory OpenMP

directives, whereas the communication between master and slave modules employed MPI. Ferretti et al15 evaluated their algorithm with

executions performed on a custom cluster comprised of four servers interconnected with a gigabit ethernet backbone. The authors concluded

that their hybrid implementation vastly outperformed the pure OpenMP implementation. In some cases, however, the pure MPI implementation

performed better than the hybrid version of the algorithm.

Usually, parallel simulations show an irregular structure and dynamic load patterns. Adaptive message passing interface (AMPI) supports

dynamic load balancing, processor virtualization, and fault tolerance for MPI applications. Diener et al16 investigated how to improve the memory

access locality of a hybrid MPI/OpenMP multiphysics simulation application in two different strategies: manually fixing locality (NUMA) issues

and by using the AMPI runtime environment. Both strategies showed different trade-offs. AMPI does not require hybrid parallelization to obtain

the resource utilization of MPI/OpenMP, but users are demanded to employ AMPI and the use of global variables. The custom C++ memory

allocator provided the most portable solution but required significant implementation effort. In both solutions, scaling was much better than

executing the pure MPI-based implementation. With this experiment, Diener et al16 observed the influence of memory locality on load balance,

A better locality of reference leads to lower stall time due to memory access, resulting in reasonable use of the resources. The same authors

reported that AMPI leads to similar locality gains, achieving better performance and scalability than the simplistic hybrid MPI/OpenMP and pure

MPI-based implementations.

Similar to the publications described in this section, the present study evaluated parallel models of methods when running on multicore and

manycore architectures. Along the same lines of the investigations conducted in previous publications,3,13,16 we implemented hybrid approaches

to reduce the NUMA effect. For a similar purpose as other investigations,3,8-13 this study analyzed hybrid configurations to evaluate the impact

of message passing operations for a large number of processes. Similar to investigations conducted in previous publications,14-16 this study

evaluated the performance of a hybrid MPI/OpenMP approach concerning load-balancing and synchronization techniques.

3 THREE 2D EXPLICIT FD METHODS

This section describes implementations of three 2D explicit FD methods for solving PDEs. Consider the bidimensional advection-diffusion

equation in the following form:

ut + v1ux + v2uy = d(ux x + uy y), (1)

with the appropriate initial and boundary conditions, where u is the variable of interest (eg, temperature for heat transfer and species concentration

for mass transfer), v1 and v2 are positive velocity constants, d is the diffusivity, and 0 ≤ x, y ≤ 1. The Hopmoc method (see the work of

Oliveira et al17 and references therein) carries out steps of the odd-even Hopscotch method,18 but the Hopmoc method performs its semisteps
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along characteristic lines in a semi-Lagrangian scheme based on the modified method of characteristics (MMOC).19 The Hopmoc method divides

the set of stencil points into two subsets during the implementation of the integration step. Then, the method alternately performs two distinct

(one explicit and one implicit) updates on each variable during the iterative process. Each update demands an integration semistep.

The 2D Hopmoc method employs the FD operator:
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− tn) represents a time (semi-) step when considering a typical FD discretization

for Equation (1), for T time steps.

The Hopmoc method performs three main steps for every time step with size Δt.17 At time step tn , the method obtains u for all stencil points

(xi, yj), for i = 1, … ,N and j = 1, … ,N using an interpolation method. At time semistep tn+ 1
2

, the method calculates u
n+ 1

2

i, j
using the explicit (implicit)

operator for stencil points for which n + i + j is odd (even). At time semistep tn+1, the method calculates un+1
i, j

using the implicit (explicit) operator

for stencil points for which n+ i+ j is odd (even). Because the method calculates neighbor stencil points at the previous time semistep, the implicit

approach does not require a linear system to be solved in the same way as the odd-even Hopscotch method performs.

In the present simulations, each thread or process depends only on two neighboring threads, because we limited the velocity in the experiments

(ie, v = 1). Thus, the method finds the foot of the characteristic line in a neighboring thread, or even in the same thread.

Algorithm 1 outlines the five double loops and corresponding synchronization points at each time step used in the implementation of the

Hopmoc method. The loop in lines 4 through 28 describes a time step in the algorithm. The first double loop outlined in line 6 performs the

MMOC step. The four double loops delineated in lines 9 through 22 carry out the four time semisteps of the method.
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The code of the five synchronization points outlined in Algorithm 1 depends on the approach used. There is no code for performing the

synchronization point when a naïve OpenMP-based approach is used. The OpenMP API uses an implicit barrier synchronization mechanism in a

naïve scheme. Furthermore, the OpenMP API uses implicit scheduling and synchronization mechanisms.

When using the OMP-EWS approach, a busy waiting loop performs the synchronization point. This synchronization mechanism is described

in detail in Section 4.1. MPI calls carry out the synchronization point in the pure MPI-based approach. Details of this synchronization mechanism

are described in Section 4.2. In the hybrid MPI/OMP-EWS version of this implementation, we employ the OMP-EWS approach, described in

Section 4.1, within the MPI implementation, reported in Section 4.2. Details of the hybrid MPI/OMP-EWS approach are described in Section 4.3.

The odd-even Hopscotch method is now described. Consider the bidimensional heat conduction equation in the following form:

ut = d(uxx + uyy), (5)

with the appropriate initial and boundary conditions. The central FD scheme for Equation (5) with un
i

as an approximation for u(xi, yj, tn) in the

2D odd-even Hopscotch method18 is also provided by the FD operator in Equation (2). Thus, Equations (3) and (4) are the consecutive time

semisteps of the method. Therefore, the 2D odd-even Hopscotch method is similar to Algorithm 1, except for the use of the MMOC method.

Consider the bidimensional Laplace equation in the form d2(uxx + uyy) = 0 where the variable of interest u here is, for example, the voltage or

the electric potential in a flat metal sheet. The Jacobi point iteration is a relaxation method because the approach replaces values at a stencil point

by the average of the values around it. In particular, relaxation methods iterate toward convergence, employing a nearest-neighbor updating

scheme. Our stencil for the Jacobi point iteration method consists of five points arranged in a cross.

Given an initial guess for the variable of interest (ie, u0
i, j

), and when approximating the second derivatives in both dimensions using a difference

equation (and using the values obtained in the previous iteration uk), one obtains

uk+1
i, j =

(
uk

i+1, j + uk
i, j+1 + uk

i−1, j + uk
i, j−1

)
∕4. (6)

The variable of interest at any stencil point at an iteration k > 0 is the average of the variables of interest at neighboring stencil points obtained

in the previous iteration. The implementation updates uk+1
i, j

only to interior points and leaves boundary values fixed.

Algorithm 2 outlines the double loop and the synchronization point used in the implementation of the Jacobi point iteration method. Lines 3

through 11 iterate a double inner loop (outlined in line 5) that performs the Jacobi point iteration in line 6. As previously mentioned, the code of

the synchronization point depends on the approach used. In Sections 4.1, 4.2, and 4.3, the OMP-EWS, MPI-based, and hybrid approaches are

described in detail, respectively.

4 OPENMP AND MPI APPROACHES FOR 2D EXPLICIT FD METHODS

In this section, the OpenMP and MPI approaches evaluated in this study are described. Specifically, several configurations of the implementations

of three 2D explicit FD methods (Hopmoc, odd-even Hopscotch, and Jacobi point iteration methods) for solving PDEs in executions performed

on two machines are outlined. The first machine featured an Intel® Xeon® PhiTM Knights Landing accelerator CPU 7250 at 1.4 GHz, comprised

of 68 cores, with four threads per core, cluster mode SNC-4, and flat memory mode. We refer to this machine as the KNL machine. The second

machine contained two sockets of an Intel® Xeon® Platinum 8160 CPU at 2.1 GHz where each socket contains 24 cores, with two threads per

core. We refer to this machine as the SKL machine. In particular, we used the icpc (Intel® C++ compiler) and mpiicpc (MPI for C++) version 2018,

with the optimization flag -O3. Additionally, in the Intel® Xeon® Scalable Processor, the -qopt-zmm-usage=high flag was set.

In the three versions of the implementation (OMP-EWS, pure MPI-based, and hybrid MPI/OpenMP approaches), the elapsed times are due to

the number of double loops used in the three 2D explicit FD methods. The 2D Hopmoc and odd-even Hopscotch methods use five and four

synchronization points, respectively, whereas the 2D Jacobi point iteration method uses only one synchronization point. The reason is that the
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2D Hopmoc and odd-even Hopscotch methods employ five and four double loops in a time step, respectively, whereas the Jacobi point iteration

method uses only one double loop. Consequently, the Hopmoc algorithm takes longer running times than the 2D odd-even Hopscotch method.

In the same vein, the 2D odd-even Hopscotch method takes longer execution times than the Jacobi point iteration algorithm.

In Sections 4.1 and 4.2, the pure OMP-EWS and MPI-based approaches are described, respectively. In Section 4.3, the MPI/OMP-EWS

approach is discussed.

4.1 A 2D OpenMP-based EWS approach with an explicit synchronization strategy

This 2D OpenMP-based version of the three explicit FD methods for solving PDEs determines a static array of Booleans that designates the

unknowns. Additionally, the implementation copes with load imbalance between threads by explicitly subdividing the array into the team of

threads. Therefore, these approaches carry out thread scheduling only at the beginning of the execution. Thus, the explicit parallel methods for

solving PDEs do not use the OpenMP parallel for directive because each thread already has its data. A thread sets (releases) its corresponding entry

in this array to inform its two adjacent threads that the data cannot (can) be accessed. We refer to this implementation as the OMP-EWS approach.
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Algorithm 3 shows a fragment of pseudocode that outlines how we synchronize adjacent threads in this approach. Line 15 in the pseudocode

describes how we define the array of locks. As the first (last) thread has no neighbor to the left (right) side, the first (last) entry of the lock array is

unset. When the mesh size is not a power of the number of threads, we set the variables localStart and localEnd of all threads so that each thread

receives only one more row of the matrix (see lines 7–13 in Algorithm 3). In particular, the implementation is a thread-safe code. Algorithm 3

improves our 1D version of the OMP-EWS approach.2

Algorithm 3 also describes the explicit synchronization mechanism employed in the 2D explicit FD methods evaluated in this study and how we

synchronize adjacent threads. The pseudocode describes how we replace the OpenMP synchronization barrier mechanism defining a range from

variables localStart to localEnd for each thread in the team. Lines 28 through 32 in Algorithm 3 represent the synchronization points described in

Algorithms 1 and 2. The busy waiting loop in lines 37 and 38 in Algorithm 3 replaces the implicit barrier synchronization mechanism employed in

the naïve OpenMP approach.

Some spin time may be desirable instead of increasing the thread context switches. Long spin time, however, can reduce productive work.

The OpenMP barrier directive recognizes a synchronization point so that threads in a parallel code fragment will not run after the OpenMP

synchronization barrier until all other threads in the team terminate their tasks. Thus, one can use the no-wait clause, and include an OpenMP

barrier directive outside the loop. Even with these directives, however, all threads in the team synchronize at the same location.2

FIGURE 1 CPU usage histograms
generated in executions of the
OMP-EWS approach of three 2D
explicit numerical methods. A,
2D Hopmoc method; B, 2D
dd-even Hopscotch method; C,
2D Jacobi point iteration method
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Figure 1 illustrates histograms of effective CPU utilization for the OMP-EWS approach of the three 2D explicit FD methods. We extracted

histograms from the Intel® VTuneTM Amplifier performance profiler in executions performed on the SKL machine. The histograms display

percentages of the wall time required when a specific number of logical and physical cores were running simultaneously. The performance

profiler adds spin and overhead times to the idle CPU utilization value. The figure shows that the three OMP-EWS approaches of the 2D explicit

FD methods used an ideal number of threads simultaneously when performed on the SKL machine. In the experiments, we set N = 104 and

T = 100 000.

Figure 1 shows that the OMP-EWS approach of the three explicit FD methods effectively uses from 37 to 42 (out of 48) physical cores, on

average (from 78% to 88%). The figure also shows that the OMP-EWS approach of the three explicit FD methods effectively uses from 74 to

85 (out of 96, which is the target utilization) logical cores, on average (from 77% to 85%). Thus, the OMP-EWS version of the three explicit

FD methods shows effective physical and logical core utilization. In particular, a naïve OpenMP-based implementation of the three explicit FD

methods uses approximately ten physical and 20 logical cores (21%). Additionally, the performance profiler showed that the OMP-EWS version

of the three explicit algorithms took from 90% to 96% (from 4% to 10%) of the required time in parallel (serial) regions.

4.2 Pure MPI-based explicit methods for solving PDEs

A parallel algorithm should balance data distribution. A parallel algorithm should allocate, as much as possible, the same number of entries to

each process. Additionally, a parallel algorithm should minimize communication. Our parallel algorithm considers the data in a 1D block partition.

Thus, each process communicates with two neighbors.

MPI provides a selection of various communication modes that permit the developer to manage the choice of the communication protocol.1 We

employed nonblocking communication in this study using the MPI_Isend() and MPI_Irecv() routines. The routines do not block the communication

and return immediately even if the communication has not terminated yet. The instructions avoid deadlocks and do not rely on buffering. In

contrast, this is not the case with the standard MPI communication mode, which, to circumvent a deadlock, depends on whether the operating

system has buffers. In the standard MPI communication mode, MPI decides whether outgoing messages will be buffered.1 Thus, the same code

can work on a machine, but a deadlock can occur on other machines.1 In particular, this implementation is iteration safe because it does not need

to verify whether the process has an odd or even rank.

Algorithm 4 shows a fragment of pseudocode that describes how we programmed this MPI-based version of the 2D explicit FD methods for

solving PDEs. The algorithm uniformly balances the load distribution between processes. The algorithm distributes the load at the beginning of

the code.

Algorithm 4 sends line 0 to the northern neighbor and line n + 1 to the southern neighbor. Similarly, the algorithm receives in line 1 the

data from the northern neighbor and in line n the data from the southern neighbor. Then, the algorithm waits for these four operations before

performing the next step of the numeric method. For example, after executing the MMOC routine, the 2D Hopmoc algorithm executes the code

referring to the MPI routines and then calculates the explicit operator of the first semistep of the Hopmoc method. Then, the algorithm runs the

MPI code, computes the implicit operator of the first semistep, and so on. We placed the MPI code in the same locations of the busy waiting loop

of the OMP-EWS approach.

Figure 2 illustrates the times computed in MPI routines concerning the execution of three 2D explicit numerical methods. We extracted

the plots from the Intel® Trace Analyser and Collector (ITAC) performance profiler in executions performed on the SKL machine. The figure

represents ratios of all MPI calls concerning the rest of the codes in the applications. The same figure lists the most active MPI functions from all

MPI calls in the applications. In the experiments, we set N = 104 and T = 10 000.

The parallelism in this context is that the execution uses more than one MPI process. The pure MPI approach creates an MPI process on each

logical core of the machine. Thus, the pure MPI approach employs 96 (272) MPI processes on the SKL (KNL) machine. There is no time spent

in OpenMP function calls. From an MPI process, a code is serial when it is not within OpenMP threads. Thus, Figures 2A and B show that the

2D Hopmoc and Hopscotch methods used approximately 86% in serial codes because the approaches employ five and four double loops (and

the same number of synchronization points) in a time step, respectively. In contrast, Figure 2C shows that the 2D Jacobi point iteration method

required approximately 97% of the time in a serial code. The reason is that the code employs only one double loop and one synchronization

point. For the same reason, Figures 2A and 2B (2C) show that the 2D Hopmoc and odd-even Hopscotch (Jacobi point iteration) methods used

approximately 14% (3%) of the running time required in MPI calls. Thus, the 2D Hopmoc and odd-even Hopscotch methods compute longer

times in the MPI_lsend, MPI_lrecv, and MPI_Wait calls than the Jacobi point iteration method does. The reason is that the two former methods

employ a larger number of synchronization points than the latter does. This feature is due to how we implemented the three explicit FD methods,

that is, these implementations call MPI routines between double loops. Thus, the implementation with more loops and more synchronization

points (the Hopmoc method) takes shorter times in serial regions and longer times with MPI calls than the other methods. On average, among

the three explicit FD methods, each synchronization point required appropriately 3.8% of the execution time in MPI calls.

The implementation computed most of the time required by MPI calls in the MPI_Wait routine. The reason is that we employed nonblocking

communication using MPI calls. In particular, the MPI_Wait routine ensures that the execution continues only after the MPI_recv routine has

completed its task.
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The MPI_Comm_rank routine determines the rank of the calling process in the communicator. The MPI_Finalize routine terminates an MPI

execution and appears only once at the end of the code. These routines spend a negligible amount of time because the application calls them

only once.

4.3 Parallel 2D explicit FD methods for solving PDEs based on an MPI/OMP-EWS approach

The MPI and OpenMP approaches rely on a thread or process to wait for its two neighbors to reach the same point in the code at the end of a

loop. In the OMP-EWS approach, the while loop performs the task using a busy-waiting technique. In contrast, the MPI approach carries out the

task using message exchange. The hybrid version uses both schemes.

The hybrid version of the three explicit FD methods employs the OMP-EWS version described in Section 4.1 as intrasocket parallelism and

the MPI-based implementation described in Section 4.2 as intersocket parallelism in executions performed on the SKL machine. In executions

performed on the KNL machine, the hybrid version of the three explicit FD methods employs the MPI/OMP-EWS core (L2) approach as intercore

and intracore (intertile and intratile) parallelism. The threads carry out all work in these implementations, that is, OpenMP calls create threads,

distribute workload (ie, work-sharing), etc. Thus, most of the time required in the execution is performed by OpenMP functions. Thus, the

percentage of time required in MPI calls is smaller in the hybrid version (see Figure 3) than in the pure MPI-based approach (see Figure 2).

We extracted images from the ITAC performance profiler in executions of the hybrid MPI/OpenMP approach performed on the SKL machine.

Figure 3 illustrates the time required in MPI and OpenMP calls regarding the execution of three numerical methods. In this context, ITAC

considers the time required in the MPI calls of the two MPI processes of this experiment. As each MPI process contains 48 threads (resulting in

96 threads computing OpenMP functions), the performance profiler also considers the time required in the OpenMP function calls. Additionally,

ITAC considers the rest of the code as serial. In the experiments, we set N = 104 and T = 200 000.

Figures 3A and 3B (3C) show that the 2D Hopmoc and odd-even Hopscotch (Jacobi point iteration) methods use approximately 4% (1%) of

the computational time in MPI calls. The hybrid MPI/OpenMP approach uses two MPI processes to perform intersocket parallelism in executions

performed on the SKL machine. Similar to the pure MPI-based versions, the hybrid approaches computed most of the time required by MPI
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FIGURE 2 CPU usage plots generated in executions of the pure MPI-based implementation of three 2D explicit numerical methods. A, 2D
Hopmoc method; B, 2D odd-even Hopscotch method; C, 2D Jacobi point iteration method

calls in the wait routine. The reason is that we employed nonblocking communication using MPI routines. In particular, the pure MPI-based

approaches compute a longer time in MPI calls (see Figures 2A, 2B, and 2C) than the MPI/OMP-EWS approaches do, because the latter uses only

intersocket MPI communication. Consequently, the hybrid MPI/OpenMP implementation takes most of the required time in OpenMP functions

that perform intrasocket parallelism (among 48 threads on each socket).

5 RESULTS AND ANALYSIS

In this section, we compare the performance of the pure MPI implementation and the improved OpenMP-based implementation with hybrid

MPI/OpenMP approaches in three 2D explicit FD methods for solving PDEs on shared-memory multicore and manycore systems. Specifically, in

this section, we discuss the results of several configurations of the implementations of the 2D Hopmoc, odd-even Hopscotch, and Jacobi point

iteration methods running on the KNL and SKL machines. We evaluated each configuration with compact and scatter thread binding policies.

• Cabral et al2 proposed a 1D scheme consisting of synchronizing only adjacent threads. We evaluate the 2D version of the approach. The

improved OpenMP approach employs an EWS strategy to reduce the OpenMP scheduling time. The OpenMP-based 2D Hopmoc method

partitions among threads an array that represents the computational mesh instead of allowing the OpenMP API to perform thread scheduling

implicitly. The OMP-EWS scheme avoids barriers using an explicit synchronization mechanism. Thus, a thread waits only for two adjacent

threads in the OMP-EWS approach. The approach reduces the OpenMP spin time required in runs performed on shared-memory multicore

and manycore architectures.

• A pure MPI-based approach.

• In executions performed on the SKL machine, the hybrid MPI/OMP-EWS version of the three explicit FD methods employs two MPI processes

(one process per socket), setting the number of threads from 1 to 48 for each MPI process. We used the next-neighbor halo exchange

communication pattern.

• In executions performed on the KNL machine, we evaluated two hybrid MPI/OMP-EWS versions:
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FIGURE 3 CPU usage plots generated in executions of the MPI/OMP-EWS approach of three 2D explicit numerical methods. A, 2D Hopmoc
method; B, 2D odd-even Hopscotch method; C, 2D Jacobi point iteration method

1. Each single physical CPU core has an MPI process with four threads. Thus, each process (and its four threads) has dedicated level 1 cache

memory. Therefore, the compact and scatter thread binding policies have distinct results. We varied the number of processes from 1 to

68 in the approach. We refer to this version as the MPI/OMP-EWS core approach. Thus, we executed this hybrid MPI/OMP-EWS version

in conjunction with scatter and compact thread binding policies.

2. Each tile was allocated to an MPI process. A tile comprises two physical CPU cores (thus, a process and its eight threads) that share the

same level 2 cache memory (containing 1 MB on the machine used in this study). We varied the number of processes from 1 to 34, with

eight threads per process. We refer to this version as the MPI/OMP-EWS L2 approach. This hybrid MPI/OMP-EWS approach presented

the same results when applied with scatter and compact thread binding policies.

In this section, we show the times computed for the MPI routines, and the time required in OpenMP calls concerning the execution of the

implementations of the numerical methods evaluated in this study. Specifically, in this section, we show the results of eight configurations of the

implementation of the 2D Hopmoc method applied to the advection-diffusion Equation (1) for a Gaussian pulse with amplitude 1.0, the odd-even

Hopscotch method applied to the heat conduction Equation (5), and the Jacobi point iteration method applied to the 2D Laplace equation.

Concerning the Hopmoc and odd-even Hopscotch methods, the runs used 106 stencil points and T = 105. The experiments ensured

convergence as the 2D Hopmoc method is convergent,20 and because the odd-even Hopscotch method shows unconditional numerical stability.21

We did not execute the Jacobi point iteration method until a steady-state phase was reached because we defined a fixed number of iterations

(100 000) to analyze the behavior of the parallel approaches. DuChateau and Zachmann22 provef the convergence of the method (see chapter

11 of their work). In particular, the matrix representation of the algorithm must have a spectral radius smaller than 1. The Jacobi point iteration

method always converges when applied to the Laplace equation. Thus, the convergence was guaranteed because we used a uniform mesh. Other

methods converge faster than the Jacobi point iteration method does. Nevertheless, the Jacobi point iteration method always converges, and

one can easily implement a parallel version of the algorithm. In Sections 5.1 and 5.2, we report the results of several implementations of three

numerical methods in experiments performed on the KNL and SKL machines, respectively.
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FIGURE 4 Speedups of the OMP-EWS, pure
MPI-based, and four MPI/OMP-EWS
approaches of the 2D Hopmoc method with
scatter and compact thread binding policies
in runs performed on a machine featuring an
Intel® Xeon® PhiTM Knights Landing
accelerator

FIGURE 5 Speedups of the OMP-EWS, pure
MPI-based, and four MPI/OMP-EWS
approaches of the 2D odd-even Hopscotch
method with scatter and compact thread
binding policies in runs performed on a
machine featuring an Intel® Xeon® PhiTM

Knights Landing accelerator

5.1 Experiments on the KNL machine

Figures 4 and 5 illustrate the results of eight configurations of the implementation of the 2D Hopmoc and odd-even Hopscotch methods in

runs performed on the KNL machine, respectively. The figures show that the OMP-EWS approach delivered better speedups than the pure MPI

approach did. In general, the former yielded shorter execution times to synchronize OpenMP threads than the latter did to synchronize MPI

processes.

Figures 4 and 5 show that the OMP-EWS approach used in conjunction with the scatter thread binding policy delivered slightly better speedups

than the same approach in tandem with the compact thread binding policy did. The reason is that the former achieved better load balancing

than the latter. Nevertheless, the OMP-EWS approach with the compact thread binding policy yielded more regular results than the use of the

scatter thread binding policy. The reason is that the former employed hyperthreading even when only a few threads were used, whereas the

latter employed hyperthreading after 68 threads were used in the machine. In particular, the scatter thread binding policy employed (two threads

per) physical cores when the application used up to 68 (136) threads in the machine. Thus, when up to two threads were used per core (ie, up to

136 threads), the version with scatter thread binding policy also yielded better results than the use of the compact thread binding policy.

Figures 4 and 5 also show that the hybrid approaches achieved better speedups than the pure OMP-EWS approach did. The hybrid approaches

yielded better cache locality due to having an MPI process allocated to a structure that shared the same level of cache memory. In particular, the

hybrid intertile approach had eight threads in the same level 2 cache memory, whereas the hybrid intercore approach had four threads in the

same level 1 cache memory in runs performed on the KNL machine.

Figures 4 and 5 also show that the hybrid approaches evaluated in this study yielded better results than the pure MPI-based version did when

used to implement parallel versions of the 2D Hopmoc and odd-even Hopscotch methods. The hybrid approaches used fewer processes than the

pure MPI-based version did. Furthermore, the hybrid versions employed only MPI processes for interdomain communication. Thus, the hybrid



14 of 19 CABRAL ET AL.

approaches delivered less process communication than the pure MPI-based version did, recalling that the implementations of the 2D Hopmoc

and odd-even Hopscotch methods employed five and four synchronization points at each time step, respectively.

Figures 4 and 5 show that, in general, the MPI/OMP-EWS core-scatter approach returned better speedups than the MPI/OMP-EWS

core-compact version did. In this case, the compact thread binding policy yielded more of a NUMA effect than the scatter thread binding policy

did because the latter had better load balancing than the former. The MPI/OMP-EWS core approach with the compact thread binding policy

yielded different results from the other versions evaluated when from 136 to 204 threads were used because of the loading imbalance caused

by how the operating system distributed MPI processes in adjacent cores (ie, cores that shared a large number of resources).

Figures 4 and 5 also show that the MPI/OMP-EWS L2 approach used in conjunction with the scatter or compact thread binding policy

yielded slightly better speedups than the MPI/OMP core-scatter approach did. A large domain, such as used in the MPI/OMP-EWS L2 approach,

significantly attenuated the NUMA effect when the implementation employed several synchronization points. The reason is that a tile comprises

two physical CPU cores that share the same level 2 cache memory. Therefore, the MPI/OMP-EWS L2 approach yielded a high cache hit rate.

Specifically, the figures show that the hybrid approaches evaluated yielded similar results when 272 threads were used because the strategies

occupied all the cores (and their threads) in this case. The MPI/OMP-EWS L2 and MPI/OMP core-scatter approaches provided regular results

because the operating system allocated the MPI processes in domains where threads share a level of cache memory. Four (eight) OpenMP

threads of a MPI process shared a level 1 (2) cache memory in the MPI/OMP-EWS core (L2) approach.

The results yielded by the MPI/OMP-EWS L2 approach were similar to the results obtained by the MPI/OMP-EWS core version with the

compact thread binding policy when up to 136 threads were used. In contrast, the results yielded by the MPI/OMP-EWS L2 approach were

similar to the results obtained by the MPI/OMP-EWS core version with the scatter thread binding policy when more than 136 threads were

used. The reasons for this behavior were the load imbalance and the NUMA effect. Furthermore, these results were related to the way binding

policies distribute the MPI processes. The NUMA effect occurs depending on how the application distributes the MPI processes. Because the

KNL machine features multichannel dynamic random-access memory, the chance of ocurring the NUMA effect increases.

The previous results apply when the code employs four (odd-even Hopscotch method) or five (Hopmoc method) double loops and

synchronization points in a time step. The results differ when the code uses only one double loop and synchronization point in an iteration.

Figure 6 illustrates the results of eight configurations of the implementation of the 2D Jacobi point iteration method in runs performed on the

KNL machine. Although the OMP-EWS approach of the 2D Hopmoc and odd-even Hopscotch methods yielded better speedups than the pure

MPI-based approach did in experiments performed on the KNL machine (see Figures 4 and 5), the pure MPI-based approach of the Jacobi point

iteration method achieved better results than the OMP-EWS strategy did in executions carried out on the same machine. Furthermore, Figure 6

shows that the OMP-EWS approach does not compare favorably with the other versions when the implementations of the method employ only

one synchronization point. The busy waiting synchronization used in the OMP-EWS approach reads an array of locks. When reading an entry

(of the array) in a thread lying in a different domain, the synchronization scheme employed in the OMP-EWS approach yielded a considerable

NUMA effect. Furthermore, the small executable file generated by the implementation of the Jacobi point iteration method benefited from the

use of the MPI model.

Figure 6 also shows that the hybrid approaches achieved better results than the OMP-EWS version did. The hybrid approaches avoided

the NUMA effect. This result occured because the hybrid approaches used MPI for interdomain communication. Thus, a thread rarely read an

entry (in the array of locks) that lay in a different thread. Nevertheless, the pure MPI-based approach yielded less of a NUMA effect than the

hybrid approaches did. Consequently, Figure 6 shows that the pure MPI-based approach delivered better results than the other versions did.

Specifically, the pure MPI-based approach with the scatter process binding policy yielded, in general, better speedups (with a speedup of 104x)

FIGURE 6 Speedups of the OMP-EWS, pure
MPI-based, and four MPI/OMP-EWS
approaches of the 2D Jacobi point iteration
method with scatter and compact thread
binding policies in runs performed on a
machine featuring an Intel® Xeon® Phi™

Knights Landing accelerator
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than the hybrid versions did when considering the runs used up to 204 threads. The pure MPI-based approach outperformed the other strategies

because the Jacobi point iteration method used only one double loop in an iteration (whereas the 2D Hopmoc (odd-even Hopscotch) method

employed five (four) double loops in a time step). Consequently, the Jacobi point iteration method presented a smaller executable file as the 2D

Hopmoc and odd-even Hopscotch methods did. Therefore, the Jacobi point iteration method required a smaller amount of level 1 instruction

cache memory than the two other algorithms did. This feature favored the use of the MPI standard. The reason is that researchers designed the

model for these cases.

Figure 6 shows that the pure MPI-based implementation used in conjunction with the scatter process binding policy yielded, in general, better

speedups than the same approach in tandem with the compact process bind policy did when up to 204 processes were used. The scatter process

binding policy employed up to three processes per physical core when the application used up to 204 processes in the machine. Furthermore,

both process binding policies achieved similar results when more than 204 threads were used. In this case, as the approaches occupied all the

cores (and their threads), differences in load balancing were reduced.

The MPI/OMP-EWS core approach allocated one core per process, whereas the MPI/OMP-EWS L2 version allocated one tile per process (ie,

the version allocated one process every two cores) (in particular, a process occupied more space than threads). Thus, the MPI/OMP-EWS core

approach required more space than the MPI/OMP-EWS L2 version because the latter involved a larger domain than the former did.

In executions using from 205 to 272 processes, the pure MPI-based, MPI/OMP-EWS L2 and core-scatter approaches yielded similar results.

Additionally, the pure MPI-based and hybrid versions achieved similar speedups when the maximum number of threads of the machine was used.

The reason is that the strategies involved all the cores (and their threads) in the experiment. These cases attenuated differences in the NUMA

effect and load balancing among the various versions evaluated in this study.

The pure MPI-based and hybrid approaches with the compact process binding policy did not present regular results because of the NUMA

effect (see Figures 4, 5, and 6). These approaches return great differences in speedups when executed with the number of threads or processes

set as multiples of the cores contained in the machine and the next number of threads or processes. The reason is that this KNL machine used

sub-NUMA cluster SNC-4 mode of cache operation.

5.2 Experiments on the SKL machine

Figures 7, 8, and 9 show the results of seven implementations of the 2D Hopmoc, odd-even Hopscotch, and Jacobi point iteration methods

in runs performed on the SKL machine, respectively. The figures illustrate the results of the pure MPI-based and OMP-EWS versions, naïve

OpenMP, and the MPI/OMP-EWS approach of the three explicit FD methods with scatter and compact thread binding policies. The figures show

that the naïve OpenMP-based implementations of the three numerical methods did not provide competitive results when compared with the

results yielded by the other versions evaluated in this study.

Figures 7, 8, and 9 reveal that the pure MPI-based approach was more efficient than the OMP-EWS approach in runs performed on the SKL

machine when considering the three explicit FD methods evaluated in this study. The pure MPI approach was more efficient in synchronizing

the processes than the OMP-EWS version in synchronizing threads between the two sockets contained in this machine. The figures also reveal

that the fewer the number of synchronization points in the code, the more the pure MPI approach yielded better results than the OMP-EWS

approach. In addition to the number of synchronization points employed in the code, the code size influenced the runtime. A small executable

file generated high instruction cache hit rates in the level 1 cache in the memory hierarchy, benefiting the MPI version.

Figure 7 shows that the MPI scatter approach of the 2D Hopmoc method yielded remarkably better results than the other versions of the

method did in executions that used only one socket. An application that employs the scatter thread binding policy uses physical cores before

FIGURE 7 Speedups of the OMP-EWS
approach, pure MPI based, and naïve
versions of the 2D Hopmoc method with
scatter and compact thread binding policies
in runs performed on a machine featuring an
Intel® Xeon® Scalable Processor
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FIGURE 8 Speedups of the pure MPI-based
implementation, the OMP-EWS,
MPI/OMP-EWS, and naïve approaches of
the odd-even Hopscotch method with
scatter and compact thread binding policies
in runs performed on a machine featuring an
Intel® Xeon® Scalable Processor

FIGURE 9 Speedups of the pure MPI-based
implementation, OMP-EWS,
MPI/OMP-EWS, and naive approaches of
the 2D Jacobi point iteration method with
scatter and compact thread binding policies
in runs performed on a machine featuring an
Intel® Xeon® Scalable Processor

using hyperthreading. Figure 9 shows that a code that employed few synchronization points and generated a small executable file diminished this

effect regarding the results yielded by the hybrid MPI/OMP-EWS approach. Furthermore, Figures 7 and 9 show that the MPI scatter approach

achieved, in general, better results than the MPI compact approach did when the approaches did not use the maximum number of threads in

the socket (in the machine). As previously mentioned, an application that applies the scatter process binding policy uses physical cores before

using hyperthreading. An application that uses the compact process binding policy employs hyperthreading with more than one process. Thus,

the former yields a better load balancing than the latter in such cases.

Figures 7 and 8 show that the OMP-EWS approach with the compact thread binding policy yielded similar results compared to the naïve

OpenMP-based approach in conjunction with the scatter thread binding policy did in executions using only one socket. The reason is that the

former employed hyperthreading even when only a few threads were used, whereas the latter employed hyperthreading after 48 threads were

used on the SKL machine. The OMP-EWS approach with the compact thread binding policy yielded notable better speedups than the naïve

OpenMP-based approach in runs carried out using both sockets. Furthermore, Figure 9 shows that the former yielded better results than the

latter did when employed in a method that used only one synchronization point and presented a small code.

Concerning the 2D Hopmoc (see Figure 7) and odd-even Hopscotch (see Figure 8) methods, the MPI/OMP-EWS approach achieved better

speedups than the other versions did in executions performed on the two sockets contained in the machine. In these cases, the MPI/OMP-EWS

version yielded more efficient synchronization than the other approaches did because the former performed MPI inter-socket and OpenMP

intra-node communications. Additionally, the hybrid MPI/OMS-EWS approach shared the same level 3 cache memory in runs carried out on the

SKL machine. Thus, the hybrid version yielded a better cache locality than the other approaches did in executions carried out on the SKL machine.

Regarding the Jacobi point iteration method (see Figure 9), although the MPI/OMP-EWS approach yielded slightly better results than the pure

MPI scatter version in executions with several different numbers of threads, the latter achieved a better speedup than the former did when the

maximum number of threads was used in runs performed on the SKL machine. The reason for the results is the load imbalance and the NUMA
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TABLE 1 Parallel approaches listed in order of the best results in the runs performed on two machines

Machine Hopmoc and odd-even Hopscotch methods Jacobi point iteration method

Intel® Xeon® PhiTM Knights Landing Processor 7250 MPI/OMP-EWS L2 scatter and compact MPI scatter

Intel® Xeon® Platinum 8160 Processor MPI/OMP-EWS

effect. The OMP-EWS approach required more time in the busy waiting synchronization than the message exchange operations performed by

the MPI API. The same level of cache memory contained MPI processes. Additionally, in general, MPI processes only performed send and receive

calls between sockets. The Jacobi point iteration method used only one double loop in an iteration, resulting in a small executable file. Thus, its

code presented high instruction cache hit rates in the level 1 cache memory. This characteristic favors the MPI model. In particular, the lower

the number of synchronization points used in the code, the higher the speedup obtained in the experiments on the SKL machine (33× within

the Hopmoc method (see Figure 7), 79× within the Hopscotch method (see Figure 8), and 117× within the Jacobi point iteration method (see

Figure 9)), recalling that the SKL machine comprises 48 cores and 96 threads. A superlinear speedup can happen for several reasons, but in the

case of the Jacobi point iteration method running on the SKL machine, it seems that the serial execution took longer than it should because of

the misuse of the level-1 data cache. Additionally, the pure MPI-based and hybrid MPI/OMP-EWS approaches achieved high cache hit rates

in executions with a large number of processes and threads, because each process or thread was responsible for little data. The Jacobi point

iteration method generated a small code by employing only a double loop. Consequently, the method achieved high instruction cache hit rates.

The same result did not occur on the KNL machine because the size and cache architecture are different from the SKL machine. Table 1 shows

the best parallel approaches used in the implementations of three explicit FD methods in the executions performed on two machines.

6 CONCLUSIONS

This paper evaluated several MPI and OpenMP approaches of three 2D explicit FD methods for solving PDEs in executions performed on two

machines. We analyzed a naïve OpenMP approach, the OMP-EWS approach, and a pure MPI-based approach. Additionally, we evaluated hybrid

MPI/OpenMP approaches intending to reduce the NUMA effect. Specifically, we appraised hybrid approaches with MPI processes in specific

domains.

The results revealed that a naïve OpenMP-based implementation of three 2D explicit FD methods for solving PDEs was inefficient. The implicit

OpenMP barrier synchronization mechanism requires significant spin and overhead times, limiting the performance of the application. The reason

is that the OpenMP standard employs a barrier synchronization mechanism that waits for all threads to reach the same point at the code. The

OpenMP API provides neither semaphores nor a barrier synchronization mechanism that allows the developer to choose specific threads to wait

for their task to be accomplished. In particular, a lock operation in OpenMP can be set and unset only by the same thread that originated the

lock. Send and receive operations between communicators in MPI perform automatic synchronization only between the processes involved in

the dependency.

The results showed that, in general, the OMP-EWS approach did not compare favorably with the other versions appraised. In general, the

MPI/OMP-EWS and pure MPI-based approaches yielded better speedups than the pure OMP-EWS approach of the 2D explicit FD methods for

solving PDEs evaluated in this study. The OMP-EWS approach of the three explicit FD methods for solving PDEs evaluated suffered from high

overhead when synchronizing threads.

The hybrid approaches evaluated reduced the NUMA effect. A large domain, such as the schemes used in the hybrid approaches evaluated

in this study, significantly attenuated the NUMA effect when the 2D explicit FD method employed several synchronization points at each time

step. The reason is that the hybrid approaches applied MPI processes for interdomain communication and OpenMP threads for intradomain

communication. For example, the MPI/OMP-EWS L2 version used MPI processes for intertile communication and OpenMP threads for intratile

communication. In this strategy, two physical CPU cores shared the same level 2 cache memory. Therefore, the MPI/OMP-EWS approach yielded

a high cache hit rate. Furthermore, in general, the use of the scatter binding policy yielded better speedups than the compact binding policy did.

The former delivered better load balancing for employing hyperthreading after occupying all physical cores in the machine, whereas the latter

uses hyperthreading even when using few threads. Furthermore, the hybrid MPI/OpenMP approaches yielded better speedups than the pure

OpenMP- and MPI-based solutions of 2D explicit FD methods that employed four (Hopmoc method) and five (odd-even Hopscotch method)

synchronization points at each time step. In contrast to the common practice of using OpenMP-based solutions on shared-memory machines,

the pure MPI-based approach achieved, in general, better results than the pure OpenMP-based and hybrid approaches when the 2D explicit FD

method employed only one synchronization point at each iteration in executions performed on the SKL and KNL machines (see Table 1). A small

executable file generated by the Jacobi point iteration method also favored the use of the MPI model. Thus, the approach attenuated the NUMA

effect and produced high cache hit rates.

The results in this study for the SKL and KNL machines indicated that the NUMA effect depended on the size of the MPI domain. In methods

that employed several synchronization points, as in the case of the 2D Hopmoc and odd-even Hopscotch methods, the MPI/OMP-EWS L2

approach delivered, in general, better results than the MPI/OMP-EWS core version in executions performed on the KNL machine. As another

example, the hybrid MPI/OMP-EWS approach yielded better results than the other approaches, recalling that the MPI/OMP-EWS approach
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employed MPI process for intersocket communication and OpenMP threads for intrasocket communication in executions performed on the SKL

machine. The use of a large domain favored the MPI model, reducing the NUMA effect.

The results in this study for the SKL and KNL machines indicated that the NUMA effect also depended on the executable size. The pure

MPI-based approach of the Jacobi point iteration method, in general, superseded the other approaches in runs carried out on the KNL and SKL

machines. The small size of the executable file favored reducing the NUMA effect in the pure MPI-based approach. Furthermore, the use of only

one synchronization point at each iteration in the Jacobi point iteration method benefited from the use of the pure MPI-based approach.

The results presented in this study raise several questions. In a future investigation, we will provide explorations of the reasons the pure

OMP-EWS approach of the 2D Hopmoc and odd-even Hopscotch method, in executions carried out on the KNL machine, yielded better results

than the pure MPI-based approach (see Figures 4 and 5). In this case, we intend to study whether the cache miss rate for MPI is higher than for

OpenMP, as indicated by Brinskiy et al.13 Furthermore, we plan to confirm whether the largest difference in time between the two approaches is

because of communication overhead. Specifically, we want to confirm whether MPI calls result in a higher execution cost than the time required

in the busy waiting loop used in the OMP-EWS approach of these two methods. We want to verify whether this effect occurs because of the

use of several synchronization points in these methods.

An application that employs the scatter thread binding policy uses physical cores before using hyperthreading, whereas an application that

employs the compact binding policy already uses hyperthreading with more than one thread. This behavior explains why the OMP-EWS

approach with the scatter thread binding policy yielded, in general, better results than the compact thread binding policy when using up to half

of the threads available on the two machines in this computational experiment. Nevertheless, concerning the Jacobi point iteration method, the

approach achieved similar results in tandem with both thread binding policies in runs performed on the KNL machine. We intend to investigate

this behavior in a future study.

In future studies, we intend to verify whether a code that occupies small instruction cache space yields superlinear speedup. We also plan to

examine whether the results presented in this study occur in other Intel® Xeon® Scalable Processors and Knights Landing accelerators. We also

need to check whether the same results happen when a different compiler is used. Additionally, we plan to appraise loop tiling techniques, which

are significant compiler optimizations.

Along the same lines, we intend to implement the hybrid approaches combining with MPI and threads. We also want to evaluate the MPI

shared memory model in the implementations of the 2D explicit FD methods assessed.

We also plan to execute the three 2D explicit FD methods evaluated in this study with large-scale meshes in executions performed in a

supercomputer environment, such as the Santos Dumont supercomputer, using a large number of nodes and cores. In this context, we intend to

investigate the use of the adaptive MPI implementation, which was designed to execute the MPI efficiently with hundreds of thousands of cores.
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