
Fine-tuning an OpenMP-based TVD–Hopmoc
method using Intel R© Parallel Studio XE tools on

Intel R© Xeon R© Architectures

Frederico L. Cabral1, Carla Osthoff1, Roberto P. Souto1, Gabriel P. Costa1,
Sanderson L. Gonzaga de Oliveira2, Diego Brandão3, and Mauricio

Kischinhevsky4

1 Laboratório Nacional de Computação Cient́ıfica - LNCC
{fcabral,osthoff,rpsouto,gcosta}@lncc.br

2 Universidade Federal de Lavras - UFLA
sanderson@edcc.ufla.br

3 Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET-RJ
diego.brandao@eic.cefet-rj.br

4 Universidade Federal Fluminense - UFF
kisch@ic.uff.br

Abstract. This paper is concerned with parallelizing the TVD–Hopmoc
method for numerical time integration of evolutionary differential equa-
tions. Using IntelR© Parallel Studio XE tools, we studied three OpenMP
implementations of the TVD–Hopmoc method (naive, CoP and EWS-
Sync), with executions performed on IntelR© XeonR© Many Integrated
Core Architecture and Scalable processor. Our implementation, named
EWS-Sync, defines an array that represents threads and the scheme con-
sists of synchronizing only adjacent threads. Moreover, this approach
reduces the OpenMP scheduling time by employing an explicit work-
sharing strategy. Instead of permitting the OpenMP API to perform
thread scheduling implicitly, this implementation of the 1-D TVD-
Hopmoc method partitions among threads the array that represents the
computational mesh of the numerical method. Thereby, this scheme di-
minishes the OpenMP spin time by avoiding barriers using an explicit
synchronization mechanism where a thread only waits for its two ad-
jacent threads. Numerical simulations show that this approach achieves
promising performance gains in shared memory for multi-core and many-
core environments.

Keywords: OpenMP · Xeon Phi · High performance computing · Par-
allel processing · Advection–diffusion equation · Thread synchronization.

1 Introduction

Investigations in transport phenomena are crucial in several scientific and engi-
neering problems. For example, in environment or reactive fluid flow problems,
a fluid transports and dissolves contaminant or chemical species. Specifically,



2 Frederico L. Cabral et al.

the numerical solution of the advection–diffusion transport equation arises from
various important applications in engineering, chemistry, and physics. Relevant
examples of its use are found in geophysical flows, such as meteorology and
oceanography, as well as in the transport of contaminants in air, groundwater,
rivers, and lagoons, oil reservoir flow, aerodynamics, astrophysics, biomedical
applications, in the modeling of semiconductors, and so forth. Consequently,
modeling the transport equation is an expressive subject in numerical mathe-
matics because it has connections with a wide range of scientific and engineering
fields [1].

The Hopmoc method (see [2] and references therein) is a spatially decoupled
alternating direction procedure for solving advection–diffusion equations. It was
designed to be executed in parallel architectures (see [3] and references therein).
Specifically, this method decouples the set of unknowns into two subsets. These
two subsets are calculated alternately by explicit and implicit approaches. In
particular, the use of two explicit and implicit semi-steps avoids the use of a
linear system solver. Moreover, this method employs a strategy based on tracking
values along characteristic lines during time stepping. The two semi-steps are
performed along characteristic lines by a Semi-Lagrangian scheme. This method
combines the time derivative and the advection term as a directional derivative.
Thus, it performs time steps in the flow direction along characteristics of the
velocity field of the fluid. We consider here the advection–diffusion equation in
the form

ut + vux = duxx, (1)

with appropriate initial and boundary conditions, where v and d are con-
stant positive velocity and diffusivity, respectively, 0 ≤ x ≤ 1 and 0 ≤
t ≤ T , for T time steps. Applying the Hopmoc method to equation (1)

yields u
t+ 1

2
i = u

t
i + δt

[
θtiLh

(
u
t
i

)
+ θt+1

i Lh

(
u
t+ 1

2
i

)]
and ut+1

i = u
t+ 1

2
i +

δt
[
θtiLh

(
u
t+ 1

2
i

)
+ θt+1

i Lh
(
ut+1
i

)]
, where θti is 1 (0) if t + i is even (odd),

Lh (uti) = d
ut
i−1−2ut

i+u
t
i+1

∆x2 is a finite-difference operator, u
t+ 1

2
i and ut+1

i are con-

secutive time semi-steps, and the value of the concentration in u
t
i is obtained by

a linear interpolation technique [2].

Discretization of the advective term in transport equations is frequently
afflicted with severe complications. To avoid spurious numerical oscillations,
Harten [4] introduced the concepts of Total Variation Diminishing (TVD) tech-
niques and flux limiter, which provide monotonicity-preserving properties and
stable higher-order accurate solutions of advection-diffusion equations. The orig-
inal Hopmoc method employs an interpolation technique to determine the value
in the foot of the characteristic line. This inherently introduces numerical errors
to the solution. A recent work [5] integrated the Hopmoc method with a TVD
scheme with the objective to deal with this restriction. We referred this new
approach as TVD–Hopmoc method [5].

We evaluated a naive OpenMP implementation of the TVD–Hopmoc method
under the Intel R© Parallel Studio XE software for Intel’s Haswell/Broadwell ar-



Fine-tuning an OpenMP-based TVD–Hopmoc method 3

chitectures. This product showed us that the main problems in the performance
of a naive OpenMP TVD–Hopmoc method was the use of the implicit OpenMP
scheduling and synchronization mechanisms. Hence, a previous publication [3]
employed alternative strategies to these naive OpenMP scheduling and synchro-
nization strategies. Our earlier approach reduced the number of loops in relation
to the original algorithm from four to two loops, improving the performance
of the algorithm in approximately 50%. It used a strategy where a single loop
combines the explicit operators, and another loop joins the implicit operators
employed in the TVD–Hopmoc method. We named it as Cluster of Points (CoP).
However, further investigations revealed that this chunking strategy still presents
an unreasonable spin time due to the OpenMP implicit barrier constructs.

The TVD–Hopmoc method computes the solution of an advection–diffusion
equation in such a way that a particular thread needs information only from
its adjacent threads so that an implicit barrier is unnecessary. Consequently,
we replaced the OpenMP implicit barrier by an explicit lock mechanism, in
which a synchronization point occurs between adjacent threads, i.e., each thread
waits only for two adjacent threads to reach the same synchronization point.
The strategy employed is a simple lock mechanism. Using an array of booleans,
a thread sets (releases) an entry location in this array and, hence, informs its
adjacent threads that the data cannot (can) be used by them. We referred this
strategy as explicit work sharing with explicit synchronization (EWS-Sync) [6].

This paper evaluates the EWS-Sync implementation of the 1-D TVD–
Hopmoc method when executed on Intel R© Xeon PhiTM Knights-Corner and
Knights Landing accelerators. Additionally, this paper shows simulations per-
formed on an Intel R© Xeon R© Scalable Processor. We compare this implementa-
tion with the CoP approach [3]. We evaluate both approaches along with three
thread binding policies: balanced, compact, and scatter policies.

Section 2 discusses state-of-the-art approaches in load balancing when using
the OpenMP standard. Section 3 discusses a naive OpenMP implementation
of the TVD–Hopmoc method. Section 4 shows results of the CoP OpenMP-
based implementation of the TVD–Hopmoc method [3]. Section 5 presents the
EWS-Sync strategy. Section 6 shows the experimental results that compare the
new approach with a naive and CoP OpenMP–based TVD–Hopmoc methods.
Finally, Section 7 addresses the conclusions and discusses the next steps in this
investigation.

2 Related work

Practitioners have been using two scheduling paradigms to address the problem
of scheduling multi-threaded computations: work sharing and work stealing. In
the work-stealing strategy, underutilized processors attempt to “steal” threads
from other processors. The work-stealing idea dates back at least as far as a
work proposed by Burton and Sleep [7]. These authors presented a model for
concurrently executing process trees, which provided a basis for matching the
generation of new tasks to the available resources [7]. They also presented an



4 Frederico L. Cabral et al.

interpretation of a topology for the support of virtual process trees on a physical
network. These authors point out that the benefits of the work-stealing paradigm
to reduce space and communication in a parallel context. Afterward, many re-
searchers have implemented variants on this strategy. Blumofe and Leiserson [8]
analyzed a work-stealing algorithm for scheduling “fully strict” (well-structured)
multi-threaded computations.

In the work sharing paradigm, whenever a processor generates new threads,
the scheduler attempts to migrate some of them to other processors with the
purpose of distributing the work to underutilized processors. Intuitively, the
migration of threads occurs less frequently when employing a work-stealing ap-
proach than using a work-sharing strategy. When many processors have tasks to
be done, a work-stealing scheduler does not migrate threads among processors,
but a work-sharing scheduler always migrates threads among processors.

Penna et al. [9] proposed a workload-aware loop scheduling strategy for ir-
regular parallel loops in which iterations are independent. These authors applied
their scheme in a large-scale NUMA machine using a synthetic kernel.

Various researchers have been proposing strategies to improve performance
on Intel R© Xeon PhiTM accelerators. These problem-solving techniques have been
trying to handle the challenge presented in this architecture to achieve linear
speedups, principally in OpenMP implementations. For example, Ma et al. [10]
proposed strategies to optimize the OpenMP implicit barrier constructs. These
authors revealed how to remove the OpenMP implicit barrier constructs when
there is no data dependence. Their second strategy uses a busy-waiting synchro-
nization. Their optimized OpenMP implementation obtained better results than
the basic OpenMP strategies.

Caballero et al. [11] introduced a tree-based barrier that uses cache locality
along with SIMD instructions. Their approach achieved a speedup of up to 2.84x
over the basic OpenMP barrier in the EPCC barrier micro-benchmark. Cabral et
al. [12] evaluated the original Hopmoc method in different parallel programming
paradigms; however this appraisal was not performed on Intel R© Xeon PhiTM

accelerators.

A previous publication [3] showed that a simple OpenMP implementation
of the TVD–Hopmoc method suffers from high load imbalance caused by the
fine-grained parallelism used inherently by the OpenMP standard. This imple-
mentation employed a parallel chunk loop strategy with the objective of avoiding
the fine-grained parallelism, which improved the performance of the implemen-
tation in approximately 50%. Another previous work [6] used an explicit work-
sharing strategy in conjunction with a new synchronization approach based on
a lock array and reached promising results both in multi-core and many-core
environments.



Fine-tuning an OpenMP-based TVD–Hopmoc method 5

3 A naive OpenMP implementation of the TVD–Hopmoc
method

This section describes a naive OpenMP implementation of the TVD–Hopmoc
method. This naive OpenMP implementation consists of the main time loop
that carries out two steps: (i) compute the MMOC step, which runs the TVD
scheme; (ii) compute the first and second (explicit and implicit) semi-steps.

We analyzed a naive OpenMP method (i.e., using the OpenMP parallel for
directive) under the Intel R© Advisor shared memory threading assistance tool.
Algorithm 1 shows a fragment of a pseudo-code that is used to obtain the suit-
ability analysis carried out by this shared memory threading assistance tool.
This fragment of pseudo-code shows an OpenMP parallel region comprised of
a time loop of the TVD–Hopmoc method. This while loop is identified as a
parallel region to be examined by the Intel R© Advisor shared memory threading
assistance tool.

1 begin
2 #pragma omp parallel;
3 {;
4 while (t < T ) do
5 [...];
6 end
7 };
8 end
Algorithm 1: A fragment of pseudo-code outlining how to obtain the suit-
ability analysis performed by the Intel R© Advisor shared memory threading
assistance tool.

Algorithm 2 shows a fragment of pseudo-code that performs a time step of
the Hopmoc method in this naive implementation. This fragment of pseudo-code
shows four for loops that calculate the two-time semi-steps of the algorithm using
alternately explicit and implicit approaches.

A naive approach to parallelize the TVD–Hopmoc method inserts OpenMP
directives in each loop that solves: (1) the total diminishing variation scheme;
(2) explicit operators; (3) implicit operators. We conducted experiments using
the OpenMP static, dynamic, and guided scheduling directives. However, we
observed poor performance for static scheduling and that dynamic and guided
scheduling directives decrease even more the performance of the algorithm. The
Intel R© Thread Advisor revealed that even with most of the code vectorized,
the estimated gain when using the OpenMP API is limited. The reason for this
is because the calculations in the method use very fine granularity to take full
advantage of parallelism techniques and HPC capabilities.

We conducted experiments with a naive OpenMP implementation of the
TVD–Hopmoc method performed on a machine containing an Intel R© Xeon R©



6 Frederico L. Cabral et al.

1 begin
2 #pragma omp for;
3 for (i← 1; i ≤ n− 1; i← i+ 1) do

// compute the MMOC step

4 end

5 #pragma omp for;
6 for (i← 1; i ≤ n− 1; i← i+ 2) do

// compute the first explicit time semi-step

7 end

8 #pragma omp for;
9 for (i← 1; i ≤ n− 1; i← i+ 2) do

// compute the first implicit time semi-step

10 end

11 #pragma omp for;
12 for (i← 1; i ≤ n− 1; i← i+ 2) do

// compute the second explicit time semi-step

13 end

14 #pragma omp for;
15 for (i← 1; i ≤ n− 1; i← i+ 2) do

// compute the second implicit time semi-step

16 end

17 end
Algorithm 2: A time step comprised of four for loops that iterate the first
and second time semi-steps of a naive OpenMP–based TVD–Hopmoc method
using alternately explicit and implicit approaches.

CPU E5-2698 v3 @ 2.30GHz composed of 32 physical cores. This naive OpenMP
implementation of the TVD–Hopmoc method obtained an inefficient perfor-
mance in a multi-core environment for ∆x = 10−5 (i.e., a mesh composed of
105 stencil points). The left side of Figure 1 shows the results of an experiment
performed with the support of the Intel R© Advisor Advanced Hotspot Analysis
shared memory threading assistance tool. It shows the high spin (imbalance or
serial spin) and overhead (scheduling) times caused by the implicit OpenMP
scheduling mechanism. The left side of Figure 1 shows a high clock ticks per
Instructions Retired (CPI) rate obtained by the naive OpenMP implementation
of the TVD–Hopmoc method. In general, the CPI rate is the first metric to
observe when verifying the performance of an application during tuning effort.
Specifically, CPI event ratio is one of the first performance metrics analyzed to
study a hardware event-based sampling collection [13]. This ratio is determined
by dividing the number of continued processor cycles (clock ticks) by the num-
ber of instructions retired. The CPI value of an application is an indication of
how much latency influenced its execution. A high CPI value means more la-
tency, on average, during runtime, i.e., the application took more clock ticks for



Fine-tuning an OpenMP-based TVD–Hopmoc method 7

an instruction to retire [13]. Generally, the code, the processor, and the system
configuration determine the CPI rate of a workload, and 0.75 (4) is a reasonable
(high) value for this ratio [13].

Fig. 1. Executions times obtained by a naive OpenMP-based method on left and the
CoP implementation of the TVD–Hopmoc method [3] on right when studied with the
support of the IntelR© Advisor shared memory threading assistance tool. Spin and
overhead times add to the idle CPU usage value.

The left side of Figure 2 shows a CPU usage histogram extracted from the
Intel R© Advisor shared memory threading assistance tool. This figure reveals that
the naive OpenMP implementation of the TVD–Hopmoc method computes a
small number of threads simultaneously. In particular, this implementation used
on average 12 cores simultaneously (in a machine composed of 32 cores).

Fig. 2. CPU usage histograms generated in an execution of the naive method on left
and in an execution of the CoP implementation of the TVD–Hopmoc method [3] on
right. These histograms display a percentage of the wall time, i.e., the specific number
of cores that were used simultaneously.



8 Frederico L. Cabral et al.

Figure 3 shows the speedup obtained by the naive OpenMP implementation
of the TVD–Hopmoc method. This figure shows that the maximum speedup (10)
obtained with this implementation is reached when using 15 cores (in a machine
with 32 cores).

Fig. 3. Speedups
of the naive, CoP,
and EWS-Sync im-
plementations of
the TVD–Hopmoc
method applied to the
advection–diffusion
equation (1) for a
Gaussian pulse with
amplitude 1.0 and ∆x
set as 10−5 (i.e., a
mesh composed of 105

stencil points), and
T = 106.

4 The CoP OpenMP-based implementation of the
TVD–Hopmoc method

As mentioned, we performed an analysis with the support of the Intel R© Thread
Advisor. It revealed that even with the code mostly vectorized, the OpenMP API
strongly limits the gains because of the fine-grained parallelism used inherently
by the OpenMP standard in each loop. This analysis led us to a version in which
a single loop joins the explicit operators and a single loop combines the implicit
operators in the TVD–Hopmoc method [3]. We named this strategy as Cluster
of Points (CoP). This strategy reduced the number of loops used in the original
algorithm from four to two loops. It improved the performance of the method in
approximately 50%.

A further investigation revealed that this chunking strategy still presented
unreasonable spin time due to the OpenMP implicit barrier constructs. The
right side of Figure 1 shows the clock ticks per Instructions Retired (CPI)
rate obtained by the CoP OpenMP-based implementation of the TVD–Hopmoc
method. The right side of Figure 2 shows a CPU usage histogram extracted from
the Intel R© Advisor shared memory threading assistance tool. This figure reveals
that the CoP OpenMP-based implementation of the TVD–Hopmoc method uses
17 threads simultaneously (in a machine with 32 cores).

Figure 3 shows the speedup obtained by the CoP OpenMP implementation
of the TVD–Hopmoc method. This figure shows that the maximum speedup (12)
obtained with this implementation is reached when using 24 cores (in a machine
with 32 cores).



Fine-tuning an OpenMP-based TVD–Hopmoc method 9

5 An improved explicit work-sharing approach along
with an explicit synchronization (EWS-Sync) strategy

Our implementation determines a static array of booleans that denotes the un-
knowns. Additionally, our implementation handles thread imbalance by subdi-
viding permanent and explicitly this array into the team of threads. Conse-
quently, this implementation carries out thread scheduling only at the beginning
of the execution. Thereby, our implementation of the TVD–Hopmoc method does
not use the OpenMP parallel for directive because each thread has its data. A
thread sets (releases) its associated entry in this array to notify its two adjacent
threads that the data cannot (can) be used [6].

The EWS-Sync OpenMP-based implementation of the 1-D TVD–Hopmoc
method slightly improves our previous implementation [6]. We removed the
#pragma omp atomic directive from the code that updates the lock array. This
modification improved the results of the EWS-Sync OpenMP-based implemen-
tation in more than 40%.

Algorithm 3 shows a fragment of pseudo-code that outlines how we synchro-
nize adjacent threads. Line 10 in this fragment of code shows how we define this
array of locks when executing it in a machine with up to 240 threads. Since the
first (last) thread have no neighbor to its left (right) side, the first (last) entry of
this lock array is unset. In particular, this implementation is a thread-safe code.

Algorithm 3 also describes the explicit synchronization mechanism employed
in the TVD–Hopmoc method and how we synchronize adjacent threads. It shows
how we replace OpenMP barriers, defining a range from localStart to localEnd
variables for each thread in the team.

A few spin time may be desirable instead of increasing thread context
switches. High spin time, however, can diminish productive work. The OpenMP
barrier directive recognizes a synchronization point at which threads in a paral-
lel code fragment will not run after the OpenMP barrier until all other threads
in the team terminate all their tasks in the parallel code fragment. Then, one
can use the no-wait clause and include an OpenMP barrier directive outside the
loop; but even with these directives, all threads in the team synchronize at the
same point.

Figure 3 shows the speedup obtained by the EWS-Sync OpenMP imple-
mentation of the TVD–Hopmoc method. This figure shows that the maximum
speedup (31) obtained with this implementation is reached when using 32 cores
(in a machine composed of 32 cores).

We also performed the experiments with the TVD–Hopmoc method using
the EWS-Sync strategies on a machine containing an Intel R© Xeon R© CPU E5-
2698 v3 @ 2.30GHz with 32 physical cores. Figure 4 shows the results of an
experiment performed with this implementation and the support of the Intel R©

Advisor Advanced Hotspot Analysis shared memory threading assistance tool.
Figure 4 shows that the EWS-Sync implementation obtained lower execution
time (458s) than both the naive OpenMP (1754s) and CoP implementations
(1192s; see Figure 1) of the TVD–Hopmoc method. Moreover, Figure 4 exhibits
that our EWS-Sync implementation obtained lower wall time (16s) than both



10 Frederico L. Cabral et al.

1 begin
2 tid← omp get thread num();
3 nt← omp get num threads();
4 size← n−2

nt
;

5 remainder ← (n− 2)%nt;
6 localStart← tid · size+ 1;
7 localEnd← localStart · size− 1;
8 if (tid = nt− 1) then localEnd← localEnd+ remainder;

9 nid← tid+ 1;
10 boolean lock[242];
11 lock[nid]← false;
12 #pragma omp master;
13 {
14 lock[0] ← false;
15 lock[nt+1] ← false;
16 }

17 #pragma omp flush (lock) // update lock array

18 [...]

// lock mechanism: inform the adjacent threads that

// this thread is performing a task in the shared memory

19 lock[nid] ← true;

20 for (i← localStart; i ≤ localEnd; i← i+ 2) do
// some work

21 end

// release the shared memory to the adjacent threads

22 lock[nid] ← false;

// verify if the shared memory is

// locked awaits until it is released

23 while (lock[nid+ 1] ∨ lock[nid− 1]) do ;

24 [...]

25 end
Algorithm 3: A fragment of pseudo-code that shows the explicit synchroniza-
tion mechanism employed in the EWS-Sync TVD–Hopmoc method.

the naive OpenMP (55s) and CoP (37s) implementations of this method. The
Figure 4 also shows a CPI rate smaller than 0.7 when executing the EWS-Sync
implementation, against a CPI rate higher than 1 obtained by both naive and
CoP implementations of the TVD–Hopmoc method (see Figure 1).

Figure 5 shows a CPU usage histogram extracted from the Intel R© Advisor
shared memory threading assistance tool. This figure shows that the EWS-Sync



Fine-tuning an OpenMP-based TVD–Hopmoc method 11

Fig. 4. Execution time ob-
tained by an explicit work-
sharing OpenMP–based TVD–
Hopmoc method when stud-
ied with the support of the
IntelR© Advisor shared memory
threading assistance tool. Spin
and overhead times add to the
idle CPU usage value.

implementation of the TVD–Hopmoc method used approximately 32 threads
simultaneously when performed on the machine afore cited. Figure 3 shows that
the EWS-Sync implementation obtained a speedup of approximately 31 when
set to run with 32 threads in the machine afforested.

Fig. 5. CPU us-
age histogram
generated in an
execution of the
EWS-Sync im-
plementation of
the TVD–Hopmoc
method [6]. Again,
this histogram
displays a percent-
age of the wall
time, i.e., this
implementation si-
multaneously uses
a specific number
of cores during its
execution.

6 Results and analysis

This section presents the results of the CoP and EWS-Sync approaches in execu-
tions performed on Intel R© Xeon R© architectures. In particular, we evaluate both
implementations along with three thread binding policies: balanced, compact,
and scatter policies.

This section shows experiments that apply both OpenMP-based implemen-
tations of the 1-D TVD–Hopmoc method to the advection–diffusion equation



12 Frederico L. Cabral et al.

(1) for a Gaussian pulse with amplitude 1.0, whose initial center location is 0.2,
with velocity v = 1 and diffusion coefficient d = 2

Re = 10−3 (where Re stands
for Reynolds number), ∆t = 10−5, ∆x = 10−5 (i.e., 105 stencil points), and T
is established as 106. Specifically, Sections 6.1 and 6.2 present the results of the
CoP and EWS-Sync approaches in runs carried out on Intel R© Many Integrated
Core architectures and a Scalable Processor, respectively.

6.1 Executions performed on Intel R© Many Integrated Core
architectures

Figure 6 shows the results of the EWS-Sync and CoP approaches in execu-
tions performed on a machine containing an Intel R© Xeon PhiTM Knights-
Corner (KNC) accelerator 5110P 1.053 GHz, with 8GB DDR5 of main mem-
ory, composed of 60 cores, with 4 threads per core. This figure exhibits that
the EWS-Sync implementation yielded a speedup of approximately 150x (using
239 threads) in this simulation alongside the balanced thread binding policy.
Therefore, Figure 6 shows that EWS-Sync implementation dominated the CoP
implementation of the TVD-Hopmoc method, which obtained a speedup of ap-
proximately 52x.

Fig. 6. Speedups
obtained by two
OpenMP imple-
mentations of the
1-D TVD–Hopmoc
method in execu-
tions performed
on an IntelR©

Xeon PhiTM

Knights-Corner
accelerator.

Figure 7 shows the results of both EWS-Sync and CoP OpenMP-based im-
plementations in runs carried out on a machine containing an Intel R© Xeon R©

PhiTM Knights Landing (KNL) accelerator CPU 7250 @ 1.40GHz, composed
of 68 cores, with 4 threads per core. This figure exhibits that the EWS-Sync
approach used in conjunction with the balanced (bal.) thread binding policy
delivered a speedup of 132x (using 271 threads) in this simulation. In partic-
ular, the EWS-Sync implementation improves our previous version of the CoP
method, which obtained a speedup of up to 25x in executions carried out on this
Intel R© Xeon PhiTM accelerator.

Figures 6 and 7 shows four discontinuities when using both scatter and bal-
anced thread binding policies because of the increased communication among
cores when using a larger number of threads. The compact binding policy al-
locates software threads on the same core, generating some overload on it. On



Fine-tuning an OpenMP-based TVD–Hopmoc method 13

Fig. 7. Speedups
of two OpenMP-
based implemen-
tations of the 1-D
TVD–Hopmoc
method in
runs performed
on an IntelR©

Xeon PhiTM

Knights Landing
accelerator.

the other hand, it reduces traffic along the interconnection bus. This charac-
teristic does not appear when executing the CoP strategy because, based on
implicit OpenMP barriers, the high spin time overcomes the time spent in the
interconnection among cores and sockets (see Figures 6, 7, and 8).

6.2 Executions performed on an Intel R© Scalable Processor

Figure 8 shows the results of both OpenMP-based implementations in runs per-
formed on a machine containing two nodes of an Intel R© Xeon R© Platinum 8160
CPU @ 2.10GHz, where each node is composed of 24 cores, with 2 threads
per core. This figure reveals that the EWS-Sync approach of the TVD–Hopmoc
method alongside the balanced thread binding policy obtained a speedup of ap-
proximately 55x (using 95 threads) in this experiment, against a speedup of 11x
reached by the CoP implementation of the TVD–Hopmoc method.

Fig. 8.
Speedups of two
OpenMP-based
implementa-
tions of the 1-D
TVD–Hopmoc
method in
runs performed
on an IntelR©

XeonR© Scalable
Processor.

In simulations performed on the Skylake and KNC architectures, the use of
the EWS-Sync approach along with both compact and balanced binding policies
obtain better speedups than the scatter binding policy. In simulations performed
on the Skylake architecture, this is due to the inter-socket communication.

Since the Skylake architecture contains two sockets connected by a bus, the
scatter binding policy is the worst way to distribute threads because of the



14 Frederico L. Cabral et al.

increased traffic alongside the bus. The compact binding policy distributes soft-
ware threats to hardware threads in such a way that every two threads occupy a
single physical core. This thread binding policy overloads some cores even when
others threads are available. For this reason, the speedup is small when using a
small number of threads.

The balanced binding policy distributes the threads inside a single socket
before assigning them to the second socket with the difference that it assigns
software threads to physical cores as long as they are available in any socket.
The balanced thread binding policy reached the best results among the binding
policies evaluated here. Figure 8 shows a discontinuity when the number of
threads goes from 48 to 49. The reason for this is because the communication
between the sockets appears and therefore some overhead is introduced.

7 Conclusion

This paper shows an OpenMP–based 1-D TVD-Hopmoc method that improves
our previous implementations [3,6]. Our implementation employs an explicit
work-sharing approach alongside a specific synchronization mechanism. The
strategies used here to implement our OpenMP–based TVD–Hopmoc method
achieved reasonable speedups in both multi-core and manycore architectures.

This OpenMP implementation defines an array that represents stencil points
where each thread will operate. Thus, this implementation uses an explicit work-
sharing strategy by previously defining this array with the objective of reducing
the scheduling time. Using a lock array where each entry represents a thread,
an approach that synchronizes adjacent threads replaces a synchronization time
in barriers. These strategies permit the threads to attain a reasonable load bal-
ancing.

Our EWS-Sync TVD–Hopmoc method reached a speedup of approximately
150x (132x) when applied to a mesh composed of 105 stencil points in a simu-
lation performed on an Intel R© Xeon PhiTM Knights-Corner (Knights Landing)
accelerator composed of 240 (272) threads. Moreover, this implementation at-
tained a speedup of approximately 55x when applied to the same mesh in a
simulation carried out on an Intel R© Xeon R© Scalable Processor.

We plan to provide further investigations with the objective of providing a
better speedup in executions on this Intel R© Xeon R© Scalable Processor. Another
step in this investigation is to implement an OpenMP–based 2–D TVD–Hopmoc
method. Even in the 2–D case, we plan to use an array (or a matrix) to represent
the stencil points so that the approach employed in the 1–D case of the TVD–
Hopmoc method is still valid.

Acknowledgments

CNPq, CAPES, and FAPERJ supported this work. We would like to thank
the Núcleo de Computação Cient́ıfica at Universidade Estadual Paulista (NC-
C/UNESP) for letting us execute our simulations on its heterogeneous multi-core



Fine-tuning an OpenMP-based TVD–Hopmoc method 15

cluster. These resources were partially funded by Intel R© through the projects en-
titled Intel Parallel Computing Center, Modern Code Partner, and Intel/Unesp
Center of Excellence in Machine Learning.

References

1. A. Holstad. The Koren upwind scheme for variable gridsize. Applied Numerical
Mathematics, 37:459–487, 2001.

2. S.R.F. Oliveira, S.L. Gonzaga de Oliveira and M. Kischinhevsky. Convergence Anal-
ysis of the Hopmoc Method. Int. J. of Comput. Math., 86: 1375–1393, 2009.

3. F.L. Cabral, C. Osthoff, G.Costa, S.L. Gonzaga de Oliveira and D.N.Brandão, M.
Kischinhevsky. Tuning up TVD HOPMOC method on Intel MIC Xeon Phi Ar-
chitectures with Intel Parallel Studio Tools. Proceedings of the 8th Workshop on
Applications for Multi-Core Architectures, 2017.

4. A. Harten. High resolution schemes for hyperbolic conservation laws. Journal of
Computational Physics. (49): 357–393, 1983.

5. D.N. Brandão, S.L. Gonzaga de Oliveira, M. Kischinhevsky, C. Osthoff, F. Cabral
(2018) A Total Variation Diminishing Hopmoc Scheme for Numerical Time Inte-
gration of Evolutionary Differential Equations. In: O. Gervasi et al. (eds) Computa-
tional Science and Its Applications – ICCSA 2018. ICCSA 2018, pp. 53–66. Lecture
Notes in Computer Science, vol 10960. Springer, Cham.

6. F.L. Cabral, C. Osthoff, G.P. Costa, S.L. Gonzaga de Oliveira, D. Brandão, M.
Kischinhevsky (2018) An OpenMP Implementation of the TVD–Hopmoc Method
Based on a Synchronization Mechanism Using Locks Between Adjacent Threads
on Xeon Phi(TM) Accelerators. In: Y. Shi et al. (eds) Computational Science –
ICCS 2018. ICCS 2018, pp. 701–707. Lecture Notes in Computer Science, vol 10862.
Springer, Cham.

7. F.W. Burton and M.R. Sleep. Executing functional programs on a virtual tree of
processors. In Proceedings of the 1981 Conference on Functional Programming Lan-
guages and Computer Architecture (Portsmouth, N.H., Oct.). ACM, New York,
N.Y., pp. 187–194, 1981.

8. R.D. Blumofe and C.E. Leiserson. Scheduling multithreaded computations by work
stealing. Journal of the ACM (JACM), vol 46, Issue 5, Sept., pages 720–748, 1999.

9. P.H. Penna, M. Castro, P. Plentz, H.C. Freitas, F. Broquedis and J.F. Mehaut.
BinLPT: A Novel Worload-Aware Loop Scheduler for Irregular Parallel Loops.
Braziliam Simposium of High Perfomance Computing. 11: 527–536, 2017.

10. H. Ma, R. Zhao, X. Gao and Y. Zhang. Barrier Optimization for OpenMP Pro-
gram. Proceedings of 10th ACIS Int. Conf. on Software Engineering, Artificial In-
telligences, Networking, Parallel and Distributed Computing, 495–500, 2009.

11. D. Caballero, A. Duran and X. Martorell. An OpenMP Barrier Using SIMD In-
structions for Intel Xeon PhiTM Coprocessor. OpenMP in the Era of Low Power
Devices and Accelerators. IWOMP 2013. A.P. Rendell and B.M. Chapman M.S.
Muller(Editors). Lecture Notes in Computer Science. 8122: 99–113, 2013.

12. F.L. Cabral, C. Osthoff, M. Kischinhevsky and D. Brandão. Hybrid MPI/OpenM-
P/OpenACC Implementations for the Solution of Convection Diffusion Equations
with Hopmoc Method. Proceedings of 14th International Conference on Computa-
tional Science and Its Applications (ICCSA), 196–199, 2014.

13. Intel. Clockticks per Instructions Retired (CPI). Available at
https://software.intel.com/en-us/vtune-amplifier-help-clockticks-per-instructions-
retired-cpi. Visited in 2017-11-30.


	Fine-tuning an OpenMP-based TVD–Hopmoc method using Intel® Parallel Studio XE tools on Intel® Xeon® Architectures

